OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 20 — Oct. 15, 2002
  • pp: 1749–1751

Morphology-dependent resonances in dielectric spheres with many tiny inclusions

Pui-tang Leung, Sheung-wah Ng, Kam-moon Pang, and Kai-ming Lee  »View Author Affiliations

Optics Letters, Vol. 27, Issue 20, pp. 1749-1751 (2002)

View Full Text Article

Acrobat PDF (89 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The morphology-dependent resonances (MDRs) in a dielectric sphere that contains many tiny inclusions are studied by use of a recently developed degenerate perturbation method. Degenerate MDRs in the sphere split into multiplets because of the loss of spherical symmetry and manifest themselves as broadened spectral lines in the scattering cross section. Furthermore, the distribution of MDRs in a multiplet is found to obey Wigner’s semicircular theorem.

© 2002 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(290.0290) Scattering : Scattering
(290.4020) Scattering : Mie theory

Pui-tang Leung, Sheung-wah Ng, Kam-moon Pang, and Kai-ming Lee, "Morphology-dependent resonances in dielectric spheres with many tiny inclusions," Opt. Lett. 27, 1749-1751 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Kerker, ed., Selected Papers on Light Scattering, Proc. SPIE 951 (1988).
  2. P. W. Barber and R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988).
  3. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  4. K. M. Lee, P. T. Leung, and K. M. Pang, J. Opt. Soc. Am. B 16, 1409 (1999).
  5. K. M. Lee, P. T. Leung, and K. M. Pang, J. Opt. Soc. Am. B 16, 1418 (1999).
  6. See, e.g., L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
  7. H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, and P. Chýlek, Opt. Lett. 17, 960 (1992).
  8. J. Gu, T. E. Ruekgauer, J. G. Xie, and R. L. Armstrong, Opt. Lett. 18, 1293 (1993).
  9. H. Taniguchi, M. Nishiya, S. Tanosaki, and H. Inaba, Opt. Lett. 21, 263 (1996).
  10. D. Ngo and R. G. Pinnick, J. Opt. Soc. Am. B 11, 1352 (1994).
  11. See, e.g., G. Gouesbet and G. Gréhan, J. Mod. Opt. 47, 821 (2000).
  12. S. W. Ng, P. T. Leung, and K. M. Lee, J. Opt. Soc. Am. B 19, 154 (2002).
  13. M. L. Mehta, Random Matrices, 2nd ed. (Academic, San Diego, Calif., 1999).
  14. See, e.g., D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols (World Scientific, Singapore, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited