OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 20 — Oct. 15, 2002
  • pp: 1785–1787

Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap

M. R. Watts, S. G. Johnson, H. A. Haus, and J. D. Joannopoulos  »View Author Affiliations

Optics Letters, Vol. 27, Issue 20, pp. 1785-1787 (2002)

View Full Text Article

Acrobat PDF (174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show how an electromagnetic cavity with arbitrarily high Q and small (bounded) modal volume can be formed in two or three dimensions with a proper choice of dielectric constants. Unlike in previous work, neither a complete photonic bandgap nor a trade-off in mode localization for Q is required. Rather, scattering and radiation are prohibited by a perfect mode match of the TE-polarized modes in each subsection of a Bragg resonator. Q values in excess of 105 are demonstrated through finite-difference time-domain simulations of two- and three-dimensional structures with modal areas or volumes of the order of the wavelength squared or cubed.

© 2002 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(230.5750) Optical devices : Resonators

M. R. Watts, S. G. Johnson, H. A. Haus, and J. D. Joannopoulos, "Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap," Opt. Lett. 27, 1785-1787 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. M. Purcell, Phys. Rev. B 69, 681 (1946).
  2. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, IEE Proc. Optoelectron 145, 391 (1998).
  3. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Chap. 7.
  4. P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, IEE Proc. Optoelectron. 145, 384 (1998).
  5. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  6. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
  7. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
  8. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, Appl. Phys. Lett. 76, 532 (2000).
  9. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, Appl. Phys. Lett. 78, 3388 (2001).
  10. S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, Computing Sci. Eng. 3, 38 (2001).
  11. J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, Phys. Rev. E 65, 016608 (2002).
  12. J. Čtyroký, J. Opt. Soc. Am. A 18, 435 (2001).
  13. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  14. K. S. Kunz and R. J. Luebbers, The Finite–Difference Time-Domain Method for Electromagnetics (CRC, Boca Raton, Fla., 1993)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited