OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 20 — Oct. 15, 2002
  • pp: 1824–1826

Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization

Martin Straub and Min Gu  »View Author Affiliations

Optics Letters, Vol. 27, Issue 20, pp. 1824-1826 (2002)

View Full Text Article

Acrobat PDF (218 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three-dimensional photonic crystals with bandgaps of 1.5–2.3 μm in wavelength and with gap/midgap ratios of as much as 18% were generated efficiently by two-photon photopolymerization in a liquid resin. From 0.5–1.1-mW femtosecond-pulsed 540-nm light, woodpile structures consisting of 40 layers of elliptically shaped rods spaced at 350–500 nm were fabricated by focusing with a 1.3-N.A. objective. The high degree of correlation in these structures allowed the suppression of infrared transmission by as much as 50% as well as the observation of higher-order bandgaps. We also investigated the decrease in the gap wavelength on reduction of layer spacing, in-plane rod spacing, and rod size.

© 2002 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication
(300.6340) Spectroscopy : Spectroscopy, infrared

Martin Straub and Min Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Opt. Lett. 27, 1824-1826 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. See J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton U. Press, New York, 1995), and references therein.
  2. J. G. Fleming and S.-Y. Lin, Opt. Lett. 24, 49 (1999).
  3. S. Noda, N. Yamamoto, H. Kobayashi, and M. Okano, Appl. Phys. Lett. 75, 905 (1999).
  4. J. Sabarinathan, P. Bhattacharya, D. Zhu, B. Kochman, and P.-C. Yu, Appl. Phys. Lett. 75, 3024 (2001).
  5. Y.-H. Ye, F. LeBlanc, A. Hache, and V.-V. Truong, Appl. Phys. Lett. 78, 52 (2001).
  6. G. Subramania, K. Constant, R. Biwas, M. M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 74, 3933 (1999).
  7. S. H. Foulger, S. Kotha, B. S. Sweryda-Krawiec, T. W. Baughman, and J. M. Ballato, Opt. Lett. 25, 1300 (2000).
  8. S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett. 22, 132 (1997).
  9. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, Nature 412, 697 (2001).
  10. P. Galajda and P. Ormos, Appl. Phys. Let. 78, 249 (2001).
  11. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, Nature 398, 51 (1999).
  12. M. P. Joshi, H. E. Pudavar, P. N. Prasad, and B. A. Reinhardt, Appl. Phys. Lett. 74, 170 (1999).
  13. H. B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 74, 786 (1999).
  14. H. B. Sun, V. Mizeikis, Y. Xu, S. Joudkazis, J.-Y. Ye, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 79, 1 (2001).
  15. R. Biwas, C. T. Chan, M. Sigalas, C. M. Soukoulis, and K. M. Ho, in Photonic Band Gap Materials, C. M. Soukoulis, ed., Vol. 315 of NATO ASI Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 23–40.
  16. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, Berlin, 2000), p. 151.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited