OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 24 — Dec. 15, 2002
  • pp: 2155–2157

Adaptive phase distortion correction in strong speckle-modulation conditions

M. A. Vorontsov and G. W. Carhart  »View Author Affiliations

Optics Letters, Vol. 27, Issue 24, pp. 2155-2157 (2002)

View Full Text Article

Acrobat PDF (302 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce beam-quality metrics for adaptive wave-front control that permit estimation of the degree of laser beam energy concentration on a remotely located extended object based upon the backscattered wave intensity distribution at the receiver. A 37-control-channel adaptive optics system with phase correction of the output wave capable of operating in the presence of speckle-field-induced strong intensity modulation is presented. System operation is based on optimization of the speckle-field-based metric by the stochastic parallel gradient descent technique. Results demonstrate that adaptive wave-front correction using speckle-field-based beam-quality metrics can significantly improve laser beam concentration on extended objects.

© 2002 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(230.3990) Optical devices : Micro-optical devices

M. A. Vorontsov and G. W. Carhart, "Adaptive phase distortion correction in strong speckle-modulation conditions," Opt. Lett. 27, 2155-2157 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. C. Dainty, ed., Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 1984).
  2. F. G. Bass and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces (Pergamon, Oxford, 1979).
  3. S. A. Kokorowski, M. E. Pedinoff, and J. E. Pearson, J. Opt. Soc. Am. 67, 333 (1977).
  4. M. C. Roggemann and B. M. Welsh, Imaging through Turbulence (CRC, Boca Raton, Fla., 1996).
  5. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  6. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, Opt. Lett. 22, 907 (1997).
  7. M. A. Vorontsov and V. P. Sivokon, J. Opt. Soc. Am. A 15, 2745 (1998).
  8. M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, J. Opt. Soc. Am. A 17, 1440 (2000).
  9. M. A. Vorontsov, V. N. Karnaukhov, A. L. Kuz’minskii, and V. I. Shmalhauzen, Sov. J. Quantum Electron. 14, 761 (1984).
  10. V. I. Polejaev and M. A. Vorontsov, Proc. SPIE 3126, 216 (1997).
  11. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. Voelz, J. Opt. Soc. Am. A 13, 1456 (1996).
  12. G. Vdovin and P. Sarro, Appl. Opt. 34, 2968 (1995).
  13. R. A. Muller and A. Buffington, J. Opt. Soc. Am. 64, 1200 (1974).
  14. We consider here the rather typical scenario where speckle statistics (characteristic speckle size) does not significantly change due to propagation.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited