OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 5 — Mar. 1, 2002
  • pp: 327–329

Superstrate index control of waveguide grating reflectivity

S. Pissadakis, M. N. Zervas, D. A. Sager, and J. S. Wilkinson  »View Author Affiliations

Optics Letters, Vol. 27, Issue 5, pp. 327-329 (2002)

View Full Text Article

Acrobat PDF (76 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Control of reflectivity of a relief grating in a high-index film overlaid on a monomode glass waveguide was achieved by adjustment of the superstrate refractive index with liquids. Weak gratings reflecting at 1531 nm were inscribed by UV laser ablation. The grating reflectivity was measured as the ratio of the transmission outside the reflection band, at 1536 nm, to that at the Bragg wavelength. Reflectivity with an air superstrate was <0.3 dB for both polarizations. In the TE polarization the grating strength increased to 20.5 dB after application of a liquid of index 1.45. In the TM polarization the strength increased to 27 dB with a superstrate index of 1.50. Good agreement was found with a theoretical model based on beam propagation.

© 2002 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(160.3130) Materials : Integrated optics materials
(230.4000) Optical devices : Microstructure fabrication
(240.0310) Optics at surfaces : Thin films

S. Pissadakis, M. N. Zervas, D. A. Sager, and J. S. Wilkinson, "Superstrate index control of waveguide grating reflectivity," Opt. Lett. 27, 327-329 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Adar, C. G. Henri, R. C. Kirstler, R. F. Kazarinof, and J. S. Weiner, Appl. Phys. Lett. 60, 1924 (1992).
  2. R. Adar, C. G. Henri, R. C. Kirstler, and R. F. Kazarinof, Appl. Phys. Lett. 60, 1779 (1992).
  3. D. F. Geragthy, D. Provenzano, W. K. Marshall, S. Honkanen, A. Yariv, and N. Peyghambarian, Electron. Lett. 35, 585 (1999).
  4. S. Pissadakis, L. Reekie, M. N. Zervas, J. S. Wilkinson, and G. Kiriakidis, Appl. Phys. Lett. 78, 694 (2001).
  5. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, J. Lightwave Technol. 17, 2361 (1999).
  6. P. E. Dyer, R. J. Farley, and R. Giedl, Appl. Phys. Lett. 64, 3389 (1994).
  7. T. Feuchter, E. K. Mwarania, J. Wang, L. Reekie, and J. S. Wilkinson, IEEE Photon. Technol. Lett. 4, 542 (1992).
  8. S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, and J. S. Wilkinson, Appl. Surf. Sci. 153, 200 (2000).
  9. G. Perrone, D. Petazzi, A. Gulisano, and I. Montrosset, Proc. SPIE 2150, 148 (1994).
  10. B. G. Kim and E. Garmire, J. Opt. Soc. Am. A 9, 132 (1992).
  11. D. L. Lee, Electromagnetic Principles of Integrated Optics (Wiley, New York, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited