OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 9 — May. 1, 2002
  • pp: 713–715

Nanoparticle-modified metal–oxide–silicon structure enhancing silicon band-edge electroluminescence to near-lasing action

Ching-Fuh Lin, Peng-Fei Chung, Miin-Jang Chen, and Wei-Fang Su  »View Author Affiliations

Optics Letters, Vol. 27, Issue 9, pp. 713-715 (2002)

View Full Text Article

Acrobat PDF (143 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With the insertion of SiO2 nanoparticles in the oxide layer, near-lasing actions such as threshold behavior and resonance modes are observed at the Si bandgap energy of metal–oxide–silicon (MOS) structure. The threshold current is ~12 mA . The SiO2 nanoparticles cause simultaneous localization of electrons and holes to enhance phonon-assisted radiative recombination. Electroluminescence at Si bandgap energy is increased to orders of magnitude larger than in similar MOS structures without SiO2 nanoparticles. The efficient light emission at the Si bandgap energy indicates that a direct bandgap nature is not necessarily the basic requirement for radiative recombination.

© 2002 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.3380) Materials : Laser materials
(230.0250) Optical devices : Optoelectronics
(230.3670) Optical devices : Light-emitting diodes

Ching-Fuh Lin, Peng-Fei Chung, Miin-Jang Chen, and Wei-Fang Su, "Nanoparticle-modified metal–oxide–silicon structure enhancing silicon band-edge electroluminescence to near-lasing action," Opt. Lett. 27, 713-715 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. G. Cullis and L. T. Canham, Nature 353, 335 (1991).
  2. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197 (1999).
  3. G. Franzo, F. Priolo, S. Coffa, A. Polman, and A. Carnera, Appl. Phys. Lett. 64, 2235 (1994).
  4. M. Matsuoka and S. Tohno, Appl. Phys. Lett. 71, 96 (1997).
  5. S. G. Pavlov, R. Kh. Zhukavin, E. E. Orlova, N. V. Shastin, A. V. Kirsanov, H.-W. Hubers, K. Auen, and H. Riemann, Phys. Rev. Lett. 84, 5220 (2000).
  6. W. Skorupa, R. A. Yankov, I. E. Tyschenko, H. Frob, T. Bohme, and K. Leo, Appl. Phys. Lett. 68, 2410 (1996).
  7. S. Oguz, W. Paul, T. F. Deutsch, B.-Y. Tsaur, and D. V. Murphy, Appl. Phys. Lett. 43, 848 (1983).
  8. C. W. Liu, J. C. Sturm, Y. R. J. Lacroix, M. L. W. Thewalt, and D. D. Ferovic, Mater. Res. Soc. Symp. Proc. 342, 37 (1994).
  9. D. B. Geohegan, A. A. Puretzky, G. Duscher, and S. J. Pennycook, Appl. Phys. Lett. 73, 438 (1998).
  10. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franz, and F. Priolo, Nature 408, 440 (2000).
  11. M. H. Nayfeh, N. Barry, J. Therrien, O. Akcakir, E. Gratton, and G. Belomoin, Appl. Phys. Lett. 78, 1131 (2001).
  12. F. Buda, J. Kohanoff, and M. Parrinello, Phys. Rev. Lett. 69, 1272 (1992).
  13. D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti, and A. B. Holmes, Appl. Phys. Lett. 65, 2636 (1994).
  14. R. Birkhahn and A. J. Steckl, Appl. Phys. Lett. 73, 1700 (1998).
  15. W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, Nature 410, 192 (2001).
  16. M. A. Green, J.-H. Zhao, A.-H. Wang, P. J. Reece, and M. Gal, Nature 412, 805 (2001).
  17. C.-F. Lin, C. W. Liu, M.-J. Chen, M. H. Lee, and I. C. Lin, J. Appl. Phys. 87, 8793 (2000).
  18. C. W. Liu, M. H. Lee, M.-J. Chen, I. C. Lin, and C.-F. Lin, Appl. Phys. Lett. 76, 1516 (2000).
  19. M.-J. Chen, C.-F. Lin, M. H. Lee, S. T. Chang, and C. W. Liu, Appl. Phys. Lett. 79, 2264 (2001).
  20. M.-J. Chen, E.-Z. Liang, S.-W. Chang, and C.-F. Lin, J. Appl. Phys. 90, 789 (2001).
  21. M.-J. Chen, C.-F. Lin, W. T. Liu, S. T. Chang, and C. W. Liu, J. Appl. Phys. 89, 323 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited