OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 28, Iss. 13 — Jul. 1, 2003
  • pp: 1084–1086

Hollow Gaussian beams and their propagation properties

Yangjian Cai, Xuanhui Lu, and Qiang Lin  »View Author Affiliations


Optics Letters, Vol. 28, Issue 13, pp. 1084-1086 (2003)
http://dx.doi.org/10.1364/OL.28.001084


View Full Text Article

Acrobat PDF (1036 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new mathematical model, described as hollow Gaussian beams (HGBs), is proposed to describe a dark hollow laser beam (DHB). The area of the dark region across the HGBs can easily be controlled by proper choice of the beam parameters. Based on the Collins integral, an analytical propagation formula for the HGBs through a paraxial optical system is derived. The HGBs also can be expressed as a superposition of a series of Lagurerre–Gaussian modes by use of a polynomial expansion. As a numerical example, the propagation properties of a DHB in free space are illustrated graphically. The HGBs provide a convenient and powerful way to describe and treat the propagation of DHBs and can be used conveniently to analyze atoms manipulated with a DHB.

© 2003 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(260.1960) Physical optics : Diffraction theory
(350.5500) Other areas of optics : Propagation

Citation
Yangjian Cai, Xuanhui Lu, and Qiang Lin, "Hollow Gaussian beams and their propagation properties," Opt. Lett. 28, 1084-1086 (2003)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-13-1084


Sort:  Author  |  Journal  |  Reset

References

  1. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, Phys. Rev. Lett. 78, 4713 (1997).
  2. Yu. B. Ovchinnikov, I. Manek, and R. Grimm, Phys. Rev. Lett. 79, 2225 (1997).
  3. Y. Song, D. Milam, and W. T. Hill, Opt. Lett. 24, 1805 (1999).
  4. J. Soding, R. Grimm, and Yu. B. Ovchinnikov, Opt. Commun. 119, 652 (1995).
  5. J. Yin, Y. Zhu, W. Jhe, and Y. Wang, Phys. Rev. A 58, 509 (1998).
  6. X. Xu, Y. Wang, and W. Jhe, J. Opt. Soc. Am. B 17, 1039 (2000).
  7. J. Yin, W. Gao, H. Wang, Q. Long, and Y. Wang, Chin. Phys. 11, 1157 (2002).
  8. X. Wang and M. G. Littman, Opt. Lett. 18, 767 (1993).
  9. R. M. Herman and T. A. Wiggins, J. Opt. Soc. Am. A 8, 932 (1991).
  10. H. S. Lee, B. W. Atewart, K. Choi, and H. Fenichel, Phys. Rev. A 49, 4922 (1994).
  11. C. Paterson and R. Smith, Opt. Commun. 124, 121 (1996).
  12. S. Marksteiner, C. M. Savage, and P. Zoller, S. Rolston, Phys. Rev. A 50, 2680 (1994).
  13. J. Arlt and K. Dholakia, Opt. Commun. 177, 297 (2000).
  14. V. I. Balykin V. S. Letokhov, Opt. Commun. 64, 151 (1987).
  15. A. Erdelyi, W. Magnus, and F. Oberhettinger, Tables of Integral Transforms (McGraw-Hill, New York, 1954).
  16. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
  17. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited