OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 14 — Jul. 15, 2003
  • pp: 1179–1181

Laser-induced reorientation effect and ripple structure in dye-doped liquid-crystal films

Andy Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, and C.-L. Lu  »View Author Affiliations

Optics Letters, Vol. 28, Issue 14, pp. 1179-1181 (2003)

View Full Text Article

Acrobat PDF (1357 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of light-induced reorientation on a homeotropical dye-doped liquid crystal (DDLC) cell are discussed. The photoexcited azo dye Methyl Red (MR) is diffused and adsorbed onto the substrate, thus forming a ripple structure. The adsorbed dye and the laser-induced ripple structure then reorient the liquid-crystal molecules and induce a holographic grating. Initially, the liquid-crystal directors are reoriented primarily by the adsorbed dye. However, given a sufficiently large ripple groove amplitude, the torque imposed by the ripple grooves overcomes that which is due to the adsorbed dyes, and the liquid crystals are realigned along the groove direction.

© 2003 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(090.0090) Holography : Holography
(210.0210) Optical data storage : Optical data storage
(240.0240) Optics at surfaces : Optics at surfaces

Andy Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, and C.-L. Lu, "Laser-induced reorientation effect and ripple structure in dye-doped liquid-crystal films," Opt. Lett. 28, 1179-1181 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, Nature (London) 351, 49 (1991).
  2. D. Voloschenko, A. Khizhnyak, Yu. Reznikov, and V. Reshetnyak, Jpn. J. Appl. Phys. 34, 566 (1995).
  3. E. Ouskova, D. Fedorenko, Yu. Reznikov, S. V. Shiyanovskii, L. Su, J. L. West, O. V. Kuksenok, O. Francescangeli, and F. Simoni, Phys. Rev. E 63, 021701 (2001).
  4. D. C. Flanders, D. C. Shaver, and H. I. Smith, Appl. Phys. Lett. 32, 597 (1978).
  5. Y. Kawata, K. Takatoh, M. Hasegawa, and M. Sakamoto, Liq. Cryst. 16, 1027 (1994).
  6. H. Niino, Y. Kawabata, and A. Yabe, Jpn. J. Appl. Phys. Part 2 28, L2225 (1989).
  7. D. W. Berreman, Phys. Rev. Lett. 28, 1683 (1972).
  8. D. Voloschenko and O. D. Lavrentovich, J. Appl. Phys. 86, 4843 (1999).
  9. A. Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, C.-L. Lu, and C.-Y. Tsai, Opt. Lett. 26, 1767 (2001).
  10. O. V. Kuksenok and S. V. Shiyanovskii, Mol. Cryst. Liq. Cryst. 359, 107 (2001).
  11. A. E. Siegman and P. M. Fauchet, IEEE J. Quantum Electron. QE-22, 1384 (1986).
  12. S. Lugomer, Laser Technology: A Laser-Driven Process (Prentice-Hall, Englewood Cliffs, N.J., 1990).
  13. D. W. Berreman, Mol. Cryst. Liq. Cryst. 23, 215 (1973).
  14. V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, Appl. Phys. A 64, 615 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited