OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 14 — Jul. 15, 2003
  • pp: 1197–1199

High transmission through waveguide bends by use of polycrystalline photonic-crystal structures

Ahmed Sharkawy, David Pustai, Shouyan Shi, and Dennis W. Prather  »View Author Affiliations

Optics Letters, Vol. 28, Issue 14, pp. 1197-1199 (2003)

View Full Text Article

Acrobat PDF (567 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid photonic-crystal structure is presented as a candidate for enhancing transmission through sharp photonic-crystal waveguide bends built on a perforated dielectric slab. This structure, which we refer to as a polycrystalline structure, combines two photonic-crystal lattices. Polycrystalline photonic-crystal structures offer the ability to minimize reflections as well as mismatches that a propagating wave might encounter while undergoing a sharp corner or a discontinuity between different waveguide sections. The availability of polycrystalline structures in photonic crystals opens a broad range of possibilities for the development of optical devices. Numerical experiments are performed with two- and three-dimensional finite-difference time domain methods.

© 2003 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits
(350.4600) Other areas of optics : Optical engineering

Ahmed Sharkawy, David Pustai, Shouyan Shi, and Dennis W. Prather, "High transmission through waveguide bends by use of polycrystalline photonic-crystal structures," Opt. Lett. 28, 1197-1199 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, Opt. Lett. 27, 1601 (2002).
  2. A. Sharkawy, S. Shi, and D. W. Prather, Appl. Opt. 40, 2247 (2001).
  3. R. W. Ziolkowski, Opt. Quantum Electron. 31, 843 (1999).
  4. M. Bayindir, B. Temelkuran, and E. Ozbay, Appl. Phys. Lett. 77, 3902 (2000).
  5. A. Sharkawy, S. Shouyuan, and D. W. Prather, Appl. Opt. 41, 7245 (2002).
  6. A. Sharkawy, S. Shouyuan, D. W. Prather, and R. A. Soref, Opt. Express 10, 1048 (2002).
  7. A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).
  8. O. Painter, A. Husain, A. Scherer, J. O’Brien, I. Kim, and P. D. Dapkus, J. Lightwave Technol. 17, 2082 (1999).
  9. A. Chutinan and S. Noda, Phys. Rev. B 62, 4488 (2000).
  10. A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, Electron. Lett. 36, 1376 (2000).
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  12. M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
  13. S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited