OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 28, Iss. 15 — Aug. 1, 2003
  • pp: 1326–1328

Inhibition of modulation instability in lasers by noise

Ariel Gordon and Baruch Fischer  »View Author Affiliations


Optics Letters, Vol. 28, Issue 15, pp. 1326-1328 (2003)
http://dx.doi.org/10.1364/OL.28.001326


View Full Text Article

Acrobat PDF (186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that additive noise can inhibit modulation instability in laser equations of motion. A related self-starting condition for pulsation is obtained by employing a fluctuation–dissipation relation between noise and losses and a statistical mechanics approach. Entropy considerations are shown to play a crucial role. The quantum limit for self-starting is estimated.

© 2003 Optical Society of America

OCIS Codes
(000.6590) General : Statistical mechanics
(140.3430) Lasers and laser optics : Laser theory
(140.4050) Lasers and laser optics : Mode-locked lasers

Citation
Ariel Gordon and Baruch Fischer, "Inhibition of modulation instability in lasers by noise," Opt. Lett. 28, 1326-1328 (2003)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-15-1326


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  2. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
  3. H. Haken, Synergetics, 2nd enlarged ed. (Springer-Verlag, Berlin, 1978).
  4. G. P. Agrawal, IEEE Photon. Technol. Lett. 4, 562 (1992).
  5. T. Kapitula, J. N. Kutz, and B. Sandstede, J. Opt. Soc. Am. B 19, 740 (2002).
  6. C. J. Chen, P. K. A. Wai, and C. R. Menyuk, Opt. Lett. 20, 350 (1995).
  7. F. Krausz, T. Brabec, and C. Spilmann, Opt. Lett. 16, 235 (1991).
  8. H. A. Haus and E. P. Ippen, Opt. Lett. 16, 1331 (1991).
  9. J. Herrmann, Opt. Commun. 98, 111 (1993).
  10. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, Opt. Lett. 18, 220 (1993).
  11. F. Krausz and T. Brabec, Opt. Lett. 18, 888 (1993).
  12. Y.-F. Chou, J. Wang, H.-H. Liu, and N.-P. Kuo, Opt. Lett. 19, 566 (1994).
  13. A. Gordon and B. Fischer, Phys. Rev. Lett. 89, 103901 (2002).
  14. A. Gordon and B. Fischer, Opt. Commun. (to be published).
  15. For simplicity of notation Gm is defined here differently from Ref. ; here the Gm have a power of unity.
  16. This is obtained from Stratonovich calculus. Intuitively, Re[a*m(eW)/(2N) Gm] is the rate at which the noise supplies energy to the m th mode, which is (eW)/(2N), the power of the noise. The summation on m adds a factor of N.
  17. E. Desurvire, Erbium Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited