OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 28, Iss. 15 — Aug. 1, 2003
  • pp: 1338–1340

Three-dimensional electric field visualization utilizing electric-field-induced second-harmonic generation in nematic liquid crystals

I-Hsiu Chen, Shi-Wei Chu, Francois Bresson, Ming-Chun Tien, Jin-Wei Shi, and Chi-Kuang Sun  »View Author Affiliations


Optics Letters, Vol. 28, Issue 15, pp. 1338-1340 (2003)
http://dx.doi.org/10.1364/OL.28.001338


View Full Text Article

Acrobat PDF (581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An electric-field-induced second-harmonic-generation signal in a nematic liquid crystal is used to map the electric field in an integrated-circuit-like sample. Since the electric-field-induced second-harmonic-generation signal intensity exhibits a strong dependence on the polarization of the incident laser beam, both the amplitude and the orientation of the electric field vectors can be measured. Combined with scanning second-harmonic-generation microscopy, three-dimensional electric field distribution can be easily visualized with high spatial resolution of the order of 1 μm .

© 2003 Optical Society of America

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(190.4400) Nonlinear optics : Nonlinear optics, materials

Citation
I-Hsiu Chen, Shi-Wei Chu, Francois Bresson, Ming-Chun Tien, Jin-Wei Shi, and Chi-Kuang Sun, "Three-dimensional electric field visualization utilizing electric-field-induced second-harmonic generation in nematic liquid crystals," Opt. Lett. 28, 1338-1340 (2003)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-15-1338


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Menzel and E. Kudalek, Scanning 5, 103 (1983).
  2. K. J. Weingarten, M. J. W. Rodwell, and D. M. Bloom, IEEE J. Quantum Electron. 24, 198 (1988).
  3. C. H. Lee, R. K. Chang, and N. Bloembergen, Phys. Rev. Lett. 18, 167 (1967).
  4. C. Ohlhoff, C. Meyer, G. Lupke, T. Loffler, T. Pfeifer, H. G. Roskos, and H. Kurz, Appl. Phys. Lett. 68, 1699 (1996).
  5. J. I. Dadap, X. F. Hu, M. H. Anderson, M. C. Downer, J. K. Lowell, and O. A. Aktsipetrov, Phys. Rev. B 53, 7607 (1996).
  6. W. de Jong, A. F. Etteger, C. A. van't Hof, P. J. van Hall, and T. Rasing, Surf. Sci. 331–333, 1372 (1995).
  7. G. Peleg, A. Lewis, M. Linial, and L. M. Loew, Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
  8. C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 77, 2331 (2000).
  9. C.-K. Sun, S.-W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, Scanning 23, 182 (2001).
  10. M. I. Barnik, L. M. Blinov, A. M. Dorozhkin, and N. M. Shtykov, Mol. Cryst. Liq. Cryst. 98, 1 (1983).
  11. N. V. Tabiryan, A. V. Sukhov, and B. Y. Zeldovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
  12. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, Phys. Rev. Lett. 47, 1411 (1981).
  13. S. K. Saha and G. K. Wong, Appl. Phys. Lett. 34, 423 (1979).
  14. R. Stolle, T. Dürr, and G. Marowsky, J. Opt. Soc. Am. B 14, 1583 (1997).
  15. For future applications a point-by-point mapping photomultiplier-tube-based reflection-type scanning SHG microscope could be used. The forward emitted SHG signal would be reflected by the device surface and could be detected with a photomultiplier tube.
  16. T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P.-C. Cheng, and I. Johnson, Scanning 23, 249 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited