OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 28, Iss. 15 — Aug. 1, 2003
  • pp: 1350–1352

Asymptotic probability density of nonlinear phase noise

Keang-Po Ho  »View Author Affiliations


Optics Letters, Vol. 28, Issue 15, pp. 1350-1352 (2003)
http://dx.doi.org/10.1364/OL.28.001350


View Full Text Article

Acrobat PDF (118 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The asymptotic probability density of nonlinear phase noise, often called the Gordon–Mollenauer effect, is derived analytically when the number of fiber spans is large. Nonlinear phase noise is the summation of infinitely many independently distributed noncentral χ2 random variables with two degrees of freedom. The mean and the standard deviation of those random variables are both proportional to the square of the reciprocal of all odd natural numbers. Nonlinear phase noise can also be accurately modeled as the summation of a noncentral χ2 random variable with two degrees of freedom and a Gaussian random variable.

© 2003 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.5060) Fiber optics and optical communications : Phase modulation
(190.3270) Nonlinear optics : Kerr effect
(190.4370) Nonlinear optics : Nonlinear optics, fibers

Citation
Keang-Po Ho, "Asymptotic probability density of nonlinear phase noise," Opt. Lett. 28, 1350-1352 (2003)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-15-1350


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. P. Gordon and L. F. Mollenauer, Opt. Lett. 15, 1351 (1990).
  2. S. Ryu, J. Lightwave Technol. 10, 1450 (1992).
  3. A. Mecozzi, J. Lightwave Technol. 12, 1993 (1994).
  4. C. J. McKinstrie and C. Xie, IEEE J. Sel. Top. Quantum Electron. 8, 616 (2002).
  5. C. J. McKinstrie and C. Xie, IEEE J. Sel. Top. Quantum Electron. 8, 956 (2002), erratum of Ref. .
  6. H. Kim and A. H. Gnauck, IEEE Photon. Technol. Lett. 15, 320 (2003).
  7. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agrawal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maymar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, in Optical Fabrication and Testing '02, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper FC2.
  8. R. A. Griffin, R. I. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, M. J. Wale, P. A. Jerram, and N. J. Parsons, in Optical Fabrication and Testing '02, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper FD6.
  9. B. Zhu, L. Leng, A. H. Gnauck, M. O. Pedersen, D. Peckham, L. E. Nelson, S. Stulz, S. Kado, L. Gruner-Nielsen, R. L. Lingle, S. Knudsen, J. Leuthold, C. Doerr, S. Chandrasekhar, G. Baynham, P. Gaarde, Y. Emori, and S. Namiki, presented at the European Conference on Optical Communication, September 8–12, Copenhagen, Denmark.
  10. R. H. Cameron and W. T. Martin, Bull. Am. Math. Soc. 51, 73 (1945).
  11. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd ed. (McGraw-Hill, New York, 1984).
  12. K.-P. Ho, “Probability density function of Kerr effect phase noise,” January 10, 2003, http://arxiv.org/abs/physics/0301018.
  13. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, San Diego, Calif., 1980).
  14. J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited