Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate enhanced performance of a single-ended spontaneous-Brillouin-intensity-based distributed-temperature sensor with a sensing length of 50 km and a spatial resolution of 15 m by use of Raman amplification of the probe pulse within the sensing fiber. The Raman amplification was achieved with a copropagating pump pulse at 1450 nm. The standard deviation error of the temperature resolution was 1 °C at the front end and increased to less than 13 °C at 50 km with Raman pulse amplification.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification

Mohamed N. Alahbabi, Yuh T. Cho, and Trevor P. Newson
J. Opt. Soc. Am. B 22(6) 1321-1324 (2005)

57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection

Sally M. Maughan, Huai H. Kee, and Trevor P. Newson
Opt. Lett. 26(6) 331-333 (2001)

Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering

M. N. Alahbabi, Y. T. Cho, and T. P. Newson
Opt. Lett. 30(11) 1276-1278 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved