OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 19 — Oct. 1, 2003
  • pp: 1826–1828

Time-domain interferometry for direct electric field reconstruction of mid-infrared femtosecond pulses

Cathie Ventalon, James M. Fraser, and Manuel Joffre  »View Author Affiliations

Optics Letters, Vol. 28, Issue 19, pp. 1826-1828 (2003)

View Full Text Article

Acrobat PDF (820 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mid-infrared ultrashort pulses of 9.2-mu;m center wavelength are characterized in both amplitude and phase. This is achieved by use of a variant of spectral phase interferometry for direct electric field reconstruction in which spectral interferometry has been replaced with time-domain interferometry, a technique that is well suited for infrared pulses. The setup permits simultaneous recording of the second-order interferometric autocorrelation, thus providing an independent check on the retrieved spectral phase.

© 2003 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(320.5540) Ultrafast optics : Pulse shaping
(320.7100) Ultrafast optics : Ultrafast measurements

Cathie Ventalon, James M. Fraser, and Manuel Joffre, "Time-domain interferometry for direct electric field reconstruction of mid-infrared femtosecond pulses," Opt. Lett. 28, 1826-1828 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. I. A. Walmsley and V. Wong, J. Opt. Soc. Am. B 13, 2453 (1996).
  2. R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
  3. C. Dorrer and M. Joffre, C. R. Acad. Sci. Paris 2, 1415 (2001).
  4. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
  5. C. Dorrer, P. Londero, and I. A. Walmsley, Opt. Lett. 26, 1510 (2001).
  6. D. T. Reid, P. Loza-Alvarez, C. T. A. Brown, T. Beddard, and W. Sibbett, Opt. Lett. 25, 1478 (2000).
  7. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
  8. B. A. Richman, M. A. Krulbügel, and R. Trebino, Opt. Lett. 22, 721 (1997).
  9. T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, Opt. Lett. 27, 131 (2002).
  10. S. Yeremenko, A. Baltuska, F. de Haan, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 27, 1171 (2002).
  11. A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, Opt. Lett. 28, 278 (2003).
  12. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, New York, 1986).
  13. K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
  14. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited