OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 20 — Oct. 15, 2003
  • pp: 1921–1923

Spectral shaping to improve the point spread function in optical coherence tomography

A. Ceyhun Akcay, Jannick P. Rolland, and Jason M. Eichenholz  »View Author Affiliations

Optics Letters, Vol. 28, Issue 20, pp. 1921-1923 (2003)

View Full Text Article

Acrobat PDF (584 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate inhibition of the sidelobes of the axial point spread function in optical coherence tomography by shaping the power spectrum of the light source with a remaining power of 4.54 mW. A broadband amplified spontaneous emission source radiating at 1565 ± 40 nm is employed in a free-space optical coherence tomography system. The axial point spread functions before and after optical spectral shaping are presented. Results show that spectral shaping of the source can inhibit sidelobes of the point spread function up to 12.9 dB, with an associated small increase of 2.2 dB in noise floor in the far field. The effect of spectral shaping on axial resolution is demonstrated according to three metrics. Image quality improvement is also illustrated with optical coherence tomography images of an onion before and after spectral shaping.

© 2003 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(350.5730) Other areas of optics : Resolution

A. Ceyhun Akcay, Jannick P. Rolland, and Jason M. Eichenholz, "Spectral shaping to improve the point spread function in optical coherence tomography," Opt. Lett. 28, 1921-1923 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
  2. J. M. Schmitt, IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).
  3. C. Akcay, P. Parrein, and J. P. Rolland, Appl. Opt. 41, 5256 (2002).
  4. B. E. Bouma and G. J. Tearney, in Handbook of Optical Coherence Tomography, B. E. Bouma G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 67–97.
  5. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), p. 179.
  6. E. Sorokin, G. Tempea, and T. Brabec, J. Opt. Soc. Am. B 17, 146 (2000).
  7. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, Opt. Lett. 27, 406 (2002).
  8. Y. Zhang, M. Sato, and N. Tanno, Opt. Lett. 26, 205 (2001).
  9. D. G. Crowe, J. Shamir, and T. W. Ryan, Appl. Opt. 32, 179 (1993).
  10. M. Bashkansky, M. D. Duncan, and J. Reintjes, Appl. Opt. 37, 8137 (1998).
  11. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), pp. 73–76.
  12. W. Duncan, B. Lee, P. Rancuret, B. Sawyers, W. Stalcup, L. Endsley, and D. Powell, Proc. SPIE 4983, 297 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited