OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 28, Iss. 20 — Oct. 15, 2003
  • pp: 1954–1956

Coupled-mode theory of the Raman effect in silicon-on-insulator waveguides

D. Dimitropoulos, B. Houshmand, R. Claps, and B. Jalali  »View Author Affiliations


Optics Letters, Vol. 28, Issue 20, pp. 1954-1956 (2003)
http://dx.doi.org/10.1364/OL.28.001954


View Full Text Article

Acrobat PDF (146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coupled-mode theory is used to calculate Raman gain and spontaneous efficiency in silicon waveguides with cross-sectional areas ranging from 0.16 to 16 μm<sup>2</sup> . We find a monotonic increase in the Raman gain as the waveguide cross section decreases for the range of dimensions considered. It is also found that mode coupling between the Stokes modes is insignificant, and thus polarization multiplexing is possible. The results also demonstrate that for submicrometer waveguide dimensions the Einstein relation between spontaneous efficiency and stimulated gain no longer holds.

© 2003 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.4310) Integrated optics : Nonlinear
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated

Citation
D. Dimitropoulos, B. Houshmand, R. Claps, and B. Jalali, "Coupled-mode theory of the Raman effect in silicon-on-insulator waveguides," Opt. Lett. 28, 1954-1956 (2003)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-20-1954


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Claps, D. Dimitropoulos, and B. Jalali, Electron. Lett. 38, 1352 (2002).
  2. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, Opt. Express 10, 1303 (2002), http://www.opticsexpress.org.
  3. T. Saito, K. Suto, T. Kimura, A. Watanabe, and J. Nishizawa, J. Appl. Phys. 87, 3399 (2000).
  4. K. Suto, T. Saito, T. Kimura, J. Nishizawa, and J. Lightwave Technol. 20, 705 (2002).
  5. P. A. Temple and C. E. Hathaway, Phys. Rev. A 7, 3685 (1973).
  6. M. Cardona, in Light Scattering in Solids II, M. Cardona and G. Guntherodt, eds. (Springer-Verlag, Berlin, 1982), pp. 19–178.
  7. J. B. Renucci, R. N. Tyte, and M. Cardona, Phys. Rev. B 11, 3885 (1975).
  8. J. M. Ralston and R. K. Chang, Phys. Rev. B 2, 1858 (1970).
  9. Y. R. Shen and N. Bloembergen, Phys. Rev. A 137, 1787 (1965).
  10. A. Yariv, Quantum Electronics (Wiley, New York, 1984).
  11. R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
  12. D. H. Choi and W. J. R. Hoefer, IEEE Trans. Microwave Theory Tech. 35, 1464 (1986).
  13. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford U. Press, Oxford, England, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited