OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 21 — Nov. 1, 2003
  • pp: 2037–2039

Distributed three-dimensional fiber Bragg grating refractometer for biochemical sensing

S. Keren and M. Horowitz  »View Author Affiliations

Optics Letters, Vol. 28, Issue 21, pp. 2037-2039 (2003)

View Full Text Article

Acrobat PDF (639 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a three-dimensional (3-D) distributed refractometer that measures refractive index in a small volume. The sensor is based on an evanescent-wave fiber Bragg grating that is interrogated by low-coherence spectral interferometry. The measurement can be performed on a short time scale without the need for a mechanical scan. The new sensor was used to simultaneously measure glucose concentration in several droplets along a single sensor and to interrogate the time-dependent evaporation process of a water droplet. The new measurement technique might enable novel 3-D distributed sensors to be developed and multiple discrete measurements to be made in a small volume.

© 2003 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(290.3030) Scattering : Index measurements

S. Keren and M. Horowitz, "Distributed three-dimensional fiber Bragg grating refractometer for biochemical sensing," Opt. Lett. 28, 2037-2039 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. P. Moore, B. A. Childers, M. E. Froggat, A. L. Cook, N. C. Coffet, L. J. Coen, J. K. Diamond, P. T. Huynh, E. M. Riley, S. K. Stover, K. G. Vipavetz, J. E. Wells, K. L. Woodman, C. D. Armstrong, J. S. Sirkis, Y. T. Peng, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 43.
  2. T. O’Brien, L. H. Johnson III, J. L. Aldrich, S. G. Allen, L. T. Liang, A. L. Plummer, S. J. Krak, and A. A. Bioarski, Biosens. Bioelectron. 14, 815 (2000).
  3. E. Brynda, M. Houska, A. Brandenburg, and A. Wikerstal, Biosens. Bioelectron. 17, 665 (2002).
  4. R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, Sens. Actuators B 74, 106 (2001).
  5. T. Allsop, L. Zhang, and I. Bennion, Opt. Commun. 191, 181 (2001).
  6. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, Meas. Sci. Technol. 12, 757 (2001).
  7. V. Goloborodko, S. Keren, A. Rosenthal, B. Levit, and M. Horowitz, Appl. Opt. 42, 2284 (2003).
  8. S. Huang, M. M. Ohn, M. Leblanc, and R. M. Measures, Smart Mater. Struct. 7, 248 (1998).
  9. M. Volanthen, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 15, 2076 (1997).
  10. S. Keren and M. Horowitz, Opt. Lett. 26, 328 (2001).
  11. R. G. Hiedeman, R. P. H. Kooyman, and J. Greve, Sens. Actuators B 12, 205 (1993).
  12. M. Horowitz, Y. Barad, and Y. Silberberg, Opt. Lett. 22, 799 (1997).
  13. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
  14. F. A. Muhammad and G. Stewart, Int. J. Optoelectron. 7, 705 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited