OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 22 — Nov. 15, 2003
  • pp: 2165–2167

Non-Gaussian statistics of soliton timing jitter induced by amplifier noise

Keang-Po Ho  »View Author Affiliations

Optics Letters, Vol. 28, Issue 22, pp. 2165-2167 (2003)

View Full Text Article

Acrobat PDF (379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on first-order perturbation theory of the soliton, the Gordon–Haus timing jitter induced by amplifier noise is found to be non-Gaussian distributed. Both frequency and timing jitter have larger tail probabilities than Gaussian distribution given by the linearized perturbation theory. The timing jitter has a larger discrepancy from Gaussian distribution than does the frequency jitter.

© 2003 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Keang-Po Ho, "Non-Gaussian statistics of soliton timing jitter induced by amplifier noise," Opt. Lett. 28, 2165-2167 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. P. Gordon and H. A. Haus, Opt. Lett. 11, 865 (1986).
  2. E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998), Chap 5.
  3. R. O. Moore, G. Biondini, and W. L. Kath, Opt. Lett. 28, 105 (2003).
  4. Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763–915 (1989).
  5. D. J. Kaup, Phys. Rev. A 42, 5689 (1990).
  6. T. Georges, Opt. Fiber Technol. 1, 97 (1995).
  7. C. R. Menyuk, Opt. Lett. 20, 285 (1995).
  8. T. Georges, Electron. Lett. 31, 1174 (1995).
  9. T. Georges, Opt. Commun. 123, 617 (1996).
  10. O. Leclerc, E. Desurvire, P. Brindel, and E. Maunand, Opt. Fiber Technol. 5, 301 (1999).
  11. G. E. Falkovich, I. Kolokolov, V. Lebedev, and S. K. Turisyn, Phys. Rev. E 63, 025601 (2001).
  12. C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer-Verlag, Berlin, 1985).
  13. P. A. Humblet and M. Azizog̃lu, J. Lightwave Technol. 9, 1576 (1991).
  14. P. Shum and H. Ghafouri-Shiraz, Opt. Laser Technol. 28, 535 (1996).
  15. E. M. Stein and J. C. Stein, Rev. Financ. Stud. 4, 727 (1991).
  16. R. H. Cameron and W. T. Martin, Bull. Am. Math. Soc. 51, 73 (1945).
  17. K.-P. Ho, in Advances in Optics and Laser Research, Vol. 3, W. T. Arkin, ed. (Nova Science, Hauppauge, N.Y., 2003).
  18. K.-P. Ho, Opt. Lett. 28, 1350 (2003).
  19. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, San Diego, Calif., 1980), Sect. 6.561.
  20. D. J. Kaup, Phys. Rev. A 44, 4582 (1991).
  21. H. A. Haus, W. S. Wong, and F. I. Khatri, J. Opt. Soc. Am. B 14, 304 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited