OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 28, Iss. 22 — Nov. 15, 2003
  • pp: 2189–2191

Asymmetric multiple-quantum-well laser diodes with wide and flat gain

Oh-Kee Kwon, Kang-ho Kim, Eun-Deok Sim, Jong-Hoi Kim, Hyun-Soo Kim, and Kwang-Ryong Oh  »View Author Affiliations


Optics Letters, Vol. 28, Issue 22, pp. 2189-2191 (2003)
http://dx.doi.org/10.1364/OL.28.002189


View Full Text Article

Acrobat PDF (362 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Asymmetric multiple-quantum-well laser diodes with wide and flat gain spectra were designed, fabricated, and analyzed. The active layer was composed of three 10-nm, one 8-nm, and two 6-nm 0.5% compressive strained wells and four 10-nm and one 5-nm 0.4% tensile strained barrier layer. Measured spectra of antireflection-coated ridge waveguide laser diodes with such quantum-well structures have shown that -1-dB spectral gain bandwidth can be as large as 90 nm.

© 2003 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3600) Lasers and laser optics : Lasers, tunable

Citation
Oh-Kee Kwon, Kang-ho Kim, Eun-Deok Sim, Jong-Hoi Kim, Hyun-Soo Kim, and Kwang-Ryong Oh, "Asymmetric multiple-quantum-well laser diodes with wide and flat gain," Opt. Lett. 28, 2189-2191 (2003)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-22-2189


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. R. Chen, L. Eng, Y. H. Zhuang, A. Yariv, N. S. Kwong, and P. C. Chen, Appl. Phys. Lett. 56, 1345 (1990).
  2. M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. K. Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, Opt. Commun. 207, 261 (2002).
  3. H. S. Gingrich, D. R. Chumney, S. Z. Sun, S. D. Hersee, L. F. Lester, and S. R. J. Brueck, IEEE Photon. Technol. Lett. 9, 155 (1997).
  4. X. Zhu, D. T. Cassidy, M. J. Hamp, D. A. Thompson, B. J. Robinson, Q. C. Zhao, and M. Davies, IEEE Photon. Technol. Lett. 9, 1202 (1997).
  5. C. F. Lin, Y. S. Su, and B. R. Wu, IEEE Photon. Technol. Lett. 14, 3 (2002).
  6. K. Shigihara, K. Kawasaki, Y. Yoshida, S. Yamamura, T. Yagi, and E. Omura, IEEE J. Quantum Electron. 38, 1081 (2002).
  7. S. L. Chuang, Phys. Rev. B 43, 9649 (1991).
  8. M. Asada, IEEE J. Quantum Electron. 25, 2019 (1989).
  9. M. Aoki, M. Komori, T. Tsuchiya, H. Sato, K. Nakahara, and K. Uomi, IEEE Photon. Technol. Lett. 7, 13 (1995).
  10. J. Piprek, P. Abraham, and J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 5, 643 (1999).
  11. M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, and D. A. Thompson, Appl. Phys. Lett. 74, 744 (1999).
  12. C. F. Lin, B. R. Wu, L. W. Laih, and T. T. Shih, Opt. Lett. 26, 1099 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited