OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 23 — Dec. 1, 2003
  • pp: 2363–2365

Modulational instability and space time dynamics in nonlinear parabolic-index optical fibers

Stefano Longhi  »View Author Affiliations

Optics Letters, Vol. 28, Issue 23, pp. 2363-2365 (2003)

View Full Text Article

Acrobat PDF (582 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Beam propagation in multimode graded-index parabolic optical fibers in the presence of group-velocity dispersion and Kerr nonlinearity is theoretically investigated. It is shown that a modulational instability arising from the periodic spatial focusing of the beam takes place regardless of the sign of fiber dispersion, leading to a highly nonlinear space–time dynamics and the generation of ultrashort optical pulses.

© 2003 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

Stefano Longhi, "Modulational instability and space time dynamics in nonlinear parabolic-index optical fibers," Opt. Lett. 28, 2363-2365 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. P. Agrawal, Nonlinear Optics, 2nd ed. (Academic, New York, 1995).
  2. G. P. Agrawal, Phys. Rev. Lett. 59, 880 (1987).
  3. S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
  4. M. Haelterman and M. Badolo, Opt. Lett. 20, 2285 (1995).
  5. F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, Opt. Lett. 18, 1499 (1993).
  6. F. Kh. Abdullaev, S. A. Darmanyan, A. Kobyakov, and F. Lederer, Phys. Lett. A 220, 213 (1996).
  7. S. B. Cavalcanti and M. L. Lyra, Phys. Lett. A 211, 276 (1996).
  8. L. W. Liou, X. D. Cao, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. A 46, 4202 (1992).
  9. J. E. Rothenberg, Opt. Lett. 17, 1340 (1992).
  10. J. T. Manassah, P. L. Baldeck, and R. R. Alfano, Opt. Lett. 13, 589 (1988).
  11. M. Karlsson, D. Anderson, and M. Desaix, Opt. Lett. 17, 22 (1992).
  12. J. T. Manassah, Opt. Lett. 18, 1259 (1992).
  13. S. S. Yu, C.-H. Chien, Y. Lai, and J. Wang, Opt. Commun. 119, 167 (1995).
  14. It is remarkable that there exist exact nonlinear periodic solutions to Eq. 1. Indeed, if E(x, y,ξ)= F(x,y)exp(-isξ) is a nonlinear guided mode of the fiber, where the mode profile F(x,y) and corresponding propagation constant s are found as the nonlinear eigenmode and the eigenvalue of the equation (1/2k0)∇2F- (k0g/2)r2F+(n2k0/n0)|F|2F=sF, one can show that an exact periodic solution to Eq. 1 is given by Es(x,y,ξ)=1―a(ξ)F(x―a y―a) ×exp[-is∫ξ0ʹa2(x)-ik0 2ada dxr2, where the scaling function a=a(x) is periodic, with period p/g, given by a(x)= a02 cos 2(gx)+sin 2(gx)1/2, and a0=a(0) is an arbitrary scaling constant. For simplicity, an approximate Gaussian solution given by Eq. 2 is considered here.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited