OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 23 — Dec. 1, 2003
  • pp: 2384–2386

Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure

Seunghyun Kim, Gregory P. Nordin, Jingbo Cai, and Jianhua Jiang  »View Author Affiliations

Optics Letters, Vol. 28, Issue 23, pp. 2384-2386 (2003)

View Full Text Article

Acrobat PDF (1177 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an ultracompact high-efficiency polarizing beam splitter that operates over a wide wavelength range and is based on a hybrid photonic crystal and a conventional waveguide structure. Within a small area (15μm ×and 10μm), this polarizing beam splitter separates TM- and TE-polarized modes into orthogonal output waveguides. Results of simulations with the two-dimensional finite-difference time-domain method show that 99.3% of TM-polarized light is deflected by the photonic crystal structure (with a 28.0-dB extinction ratio), whereas 99.0% of TE-polarized light propagates through the structure (with a 32.2-dB extinction ratio). Wave vector diagrams are employed to explain the operation of a polarizing beam splitter. Tolerance analysis reveals a large tolerance to fabrication errors.

© 2003 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.5440) Optical devices : Polarization-selective devices
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

Seunghyun Kim, Gregory P. Nordin, Jingbo Cai, and Jianhua Jiang, "Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure," Opt. Lett. 28, 2384-2386 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. P. Nordin, S. Kim, J. Cai, and J. Jiang, Opt. Express 10, 1334 (2002), http://www.opticsexpress.org.
  2. R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
  3. P. Wei and W. Wang, IEEE Photon. Technol. Lett. 6, 245 (1994).
  4. L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, IEEE Photon. Technol. Lett. 6, 402 (1994).
  5. H. Maruyama, M. Haruna, and H. Nishihara, J. Lightwave Technol. 13, 1550 (1995).
  6. S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photon. Technol. Lett. 11, 842 (1999).
  7. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).
  8. J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
  9. M. Notomi, Phys. Rev. B 62, 10, 696 (2000).
  10. T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited