OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 4 — Feb. 15, 2003
  • pp: 260–262

Emergence of linear wave segments and predictable traits in saturated nonlinear media

Eugenio DelRe, Angelo D’Ercole, and Aharon J. Agranat  »View Author Affiliations

Optics Letters, Vol. 28, Issue 4, pp. 260-262 (2003)

View Full Text Article

Acrobat PDF (87 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We find the key behind the existence traits of asymptotic saturated nonlinear optical solitons in the emergence of linear wave segments. These traits, produced by the progressive relegation of nonlinear dynamics to wave tails, allow a direct and versatile analytical prediction of self-trapping existence conditions and simple soliton scaling laws, which we confirm experimentally in saturated-Kerr self-trapping observed in photorefractives. This approach provides the means to correctly evaluate beam tails in the saturated regime, which is instrumental in the prediction of soliton interaction forces.

© 2003 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5330) Nonlinear optics : Photorefractive optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Eugenio DelRe, Angelo D’Ercole, and Aharon J. Agranat, "Emergence of linear wave segments and predictable traits in saturated nonlinear media," Opt. Lett. 28, 260-262 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Trillo and W. Torruellas, eds., Spatial Solitons (Springer-Verlag, Berlin, 2002).
  2. G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
  3. A. Degasperis, Am. J. Phys. 66, 486 (1998).
  4. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994).
  5. D. N. Christodoulides and M. I. Carvalho, J. Opt. Soc. Am. B 12, 1628 (1995).
  6. M. Segev, M. Shih, and G. C. Valley, J. Opt. Soc. Am. B 13, 706 (1996).
  7. M. Soljacic, M. Segev, and C. R. Menyuk, Phys. Rev. E 61, R1048 (2000).
  8. V. Tikhonenko, J. Christou, and B. Luther-Davies, Phys. Rev. Lett. 76, 2698 (1996).
  9. G. Khitrova, H. M. Gibbs, Y. Kawamura, H. Iwamura, T. Ikegami, J. E. Sipe, and L. Ming, Phys. Rev. Lett. 70, 920 (1993).
  10. K. Kos, H. Meng, G. Salamo, M. Shih, M. Segev, and G. C. Valley, Phys. Rev. E 53, R4330 (1996).
  11. E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, and A. J. Agranat, Opt. Lett. 23, 421 (1998).
  12. M. Segev and A. J. Agranat, Opt. Lett. 22, 1299 (1997).
  13. A. W. Snyder, D. J. Mitchell, L. Poladian, and F. Ladouceur, Opt. Lett. 16, 21 (1991).
  14. J. P. Gordon, Opt. Lett. 8, 596 (1983).
  15. D. Anderson and M. Lisak, Phys. Rev. A 32, 2270 (1995).
  16. E. DelRe and A. J. Agranat, Phys. Rev. A 65, 53814 (2002).
  17. K. Kos, G. Salamo, and M. Segev, Opt. Lett. 23, 1001 (1998).
  18. One can appreciate the difference between the Taylor expansion approach and ours by comparing our Fig. 2(a) and Fig. 1 of Ref.7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited