OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 7 — Apr. 1, 2003
  • pp: 573–575

Finite-difference time-domain simulation of ultrashort pulse propagation incorporating quantum-mechanical response functions

Julie A. Gruetzmacher and NorbertF. Scherer  »View Author Affiliations

Optics Letters, Vol. 28, Issue 7, pp. 573-575 (2003)

View Full Text Article

Acrobat PDF (92 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A semiclassical implementation of the finite-difference time-domain method is used to simulate coherent linear propagation of ultrashort mid-infrared pulses through optically dense samples of isotropically diluted liquid water. Bloch equations for the density matrix are used as a simple model of the O—H oscillator relaxation, and the algorithm is extended to other response functions. Sensitivity of the field to the form of the response function is demonstrated, and the results are compared with experimentally determined electric fields in the same media [Rev. Sci. Instrum. 73, 2227 (2002)].

© 2003 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(270.5530) Quantum optics : Pulse propagation and temporal solitons
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

Julie A. Gruetzmacher and NorbertF. Scherer, "Finite-difference time-domain simulation of ultrashort pulse propagation incorporating quantum-mechanical response functions," Opt. Lett. 28, 573-575 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. U. van Buerck, Hyperfine Interact. 123/124, 483 (1999).
  2. J. A. Gruetzmacher and N. F. Scherer, Rev. Sci. Instrum. 73, 2227 (2002).
  3. M. Bonn, S. Woutersen, and H. J. Bakker, Opt. Commun. 147, 138 (1998).
  4. D. S. Kim, J. Shah, D. A. B. Miller, T. C. Damen, A. Vinattieri, W. Schaeffer, and L. N. Pfeiffer, Phys. Rev. B 50, 18240 (1994).
  5. F. C. Spano and W. S. Warren, J. Chem. Phys. 93, 1546 (1990).
  6. H.-J. Hartmann and A. Laubereau, J. Chem. Phys. 80, 4663 (1984).
  7. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).
  8. M. C. Beard and C. A. Schmuttenmaer, J. Chem. Phys. 114, 2903 (2001).
  9. O. D. Muecke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kaertner, Phys. Rev. Lett. 87, 057401 (2001).
  10. R. W. Ziolkowski, J. M. Arnold, and D. M. Cogny, Phys. Rev. A 52, 3082 (1995).
  11. H. R. Wyss, and M. Falk, Can. J. Chem. 48, 607 (1970).
  12. J. E. Bertie, M. Khalique Ahmed, and H. H. Eysel, J. Phys. Chem. 93, 2210 (1989).
  13. J. A. Gruetzmacher, submitted to J. Chem. Phys.
  14. J. Stenger, D. Madsen, P. Hamm, E. T. J. Nibbering, and T. Elsaesser, J. Phys. Chem. A 106, 2341 (2002).
  15. T. Joo, Y. Jia, J.-Y. Yu, M. J. Lang, and G. R. Fleming, J. Chem. Phys. 104, 6089 (1996).
  16. S. Yeremenko, M. S. Pshenichnikov, and D. A. Wiersma, in Ultrafast Phenomena XIII, M. Murnane, N. F. Scherer, R. J. D. Miller, and A. M. Weiner, eds. (Springer-Verlag, Berlin, 2002), p. 574.
  17. J. A. Gruetzmacher and N. F. Scherer, submitted to J. Phys. Chem. A.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited