OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 28, Iss. 9 — May. 1, 2003
  • pp: 737–739

Micromechanics-based digitally controlled tunable optical beam shaper

Sarun Sumriddetchkajorn  »View Author Affiliations


Optics Letters, Vol. 28, Issue 9, pp. 737-739 (2003)
http://dx.doi.org/10.1364/OL.28.000737


View Full Text Article

Acrobat PDF (453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A digitally controlled programmable optical beam shaper that uses a two-dimensional (2-D) small-tilt micromirror device is introduced. The optical intensity profile at any spatial position can be independently modified by use of a macropixel incorporated with binary pulse-width modulation. An experimental proof-of-concept optical beam shaper with a commercial 2-D digital micromirror device has shown that the spatial profile of a He–Ne laser beam can be digitally manipulated. Investigation of the analog intensity control showed 256-level nonlinear degamma behavior with a measured 24.5-dB optical contrast ratio and a 10-bit spatial resolution. The performance of this tunable optical beam shaper is limited by the dimensions of the micromirror, the intermirror distance, the size of the optical beam, the number of bits used to control the micromirror, the diffraction effect, and the quality of the imaging optical system.

© 2003 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(230.4040) Optical devices : Mirrors
(230.6120) Optical devices : Spatial light modulators
(350.3950) Other areas of optics : Micro-optics

Citation
Sarun Sumriddetchkajorn, "Micromechanics-based digitally controlled tunable optical beam shaper," Opt. Lett. 28, 737-739 (2003)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-9-737


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. S. Ih, Appl. Opt. 11, 694 (1972).
  2. P. W. Rhodes and D. L. Shealy, Appl. Opt. 19, 3545 (1986).
  3. V. Russo, G. Righini, S. Sottini, and S. Trigari, Proc. SPIE 52, 166 (1985).
  4. T. Dresel, M. Geyerlein, and J. Schwider, Appl. Opt. 35, 4615 (1996).
  5. Y. Ohtsuka and A. Tanone, Opt. Commun. 39, 70 (1981).
  6. N. A. Riza and S. Yuan, Opt. Eng. 37, 1876 (1998).
  7. N. Bokor and N. Davidson, Appl. Opt. 40, 2132 (2001).
  8. F. J. Villarreal, H. J. Baker, R. H. Abram, D. R. Jones, and D. R. Hall, J. Quantum Electron. 35, 267 (1999).
  9. Y. C. Bonetti and J. Gobrecht, Appl. Opt. 39, 5806 (2000).
  10. G.-Y. Yoon, T. Jitsuno, M. Nakatsuka, and Y. Kato, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 505–506.
  11. S. Sumriddetchkajorn, “Fiber-optic beam control systems using microelectromechanical systems,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 2000 ; University Microfilms, Ann Arbor, Mich.).
  12. R. L. Knipe, Proc. SPIE 2783, 135 (1996).
  13. P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, Proc. IEEE 86, 1687 (1998).
  14. T. Kreis, P. Aswendt, and R. Höfling, Opt. Eng. 40, 926 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited