OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 1 — Jan. 1, 2004
  • pp: 44–46

Parabolic nondiffracting optical wave fields

Miguel A. Bandres, Julio C. Gutiérrez-Vega, and Sabino Chávez-Cerda  »View Author Affiliations

Optics Letters, Vol. 29, Issue 1, pp. 44-46 (2004)

View Full Text Article

Acrobat PDF (1597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the existence of parabolic beams that constitute the last member of the family of fundamental nondiffracting wave fields and determine their associated angular spectrum. Their transverse structure is described by parabolic cylinder functions, and contrary to Bessel or Mathieu beams their eigenvalue spectrum is continuous. Any nondiffracting beam can be constructed as a superposition of parabolic beams, since they form a complete orthogonal set of solutions of the Helmholtz equation. A novel class of traveling parabolic waves is also introduced for the first time.

© 2004 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(140.3300) Lasers and laser optics : Laser beam shaping
(260.1960) Physical optics : Diffraction theory
(350.5500) Other areas of optics : Propagation

Miguel A. Bandres, Julio C. Gutiérrez-Vega, and Sabino Chávez-Cerda, "Parabolic nondiffracting optical wave fields," Opt. Lett. 29, 44-46 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
  2. J. Salo, J. Fagerholm, A. T. Friberg, and M. M. Salomaa, Phys. Rev. Lett. 83, 1171 (1999).
  3. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Vol. 1.
  4. E. G. Kalnins and W. Miller, Jr., J. Math. Phys. 18, 271 (1977), and references therein.
  5. W. Miller, Jr., in Encyclopedia of Mathematics and Applications, G. C. Rota, ed. (Addison-Wesley, Reading, Mass., 1977).
  6. J. C. Gutierrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, Opt. Lett. 25, 1493 (2000).
  7. S. Chávez-Cerda, J. C. Gutiérrez-Vega, and G. H. C. New, Opt. Lett. 26, 1803 (2001).
  8. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, G. A. Ramírez, E. Tepichín, R. M. Rodríguez-Dagnino, S. Chávez-Cerda, and G. H. C. New, Opt. Commun. 195, 35 (2001).
  9. G. Indebetouw, J. Opt. Soc. Am. A 6, 150 (1989).
  10. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge U. Press, Cambridge, England, 1927).
  11. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1964), Chap. 19.
  12. P. Hillion, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 57, 1702 (1997).
  13. S. Chávez-Cerda, J. Mod. Opt. 46, 923 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited