OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 1 — Jan. 1, 2004
  • pp: 50–52

Dispersion-based optical routing in photonic crystals

Dennis W. Prather, Shouyuan Shi, David M. Pustai, Caihua Chen, Sriram Venkataraman, Ahmed Sharkawy, GarrettJ. Schneider, and Janusz Murakowski  »View Author Affiliations

Optics Letters, Vol. 29, Issue 1, pp. 50-52 (2004)

View Full Text Article

Acrobat PDF (615 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present and experimentally validate self-collimation in planar photonic crystals as a new means of achieving structureless confinement of light in optical devices. We demonstrate the ability to arbitrarily route light by exploiting the dispersive characteristics of the photonic crystal. Propagation loss as low as 2.17 dB/mm is observed, and proposed applications of these devices are presented.

© 2004 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.3120) Optical devices : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(260.2030) Physical optics : Dispersion

Dennis W. Prather, Shouyuan Shi, David M. Pustai, Caihua Chen, Sriram Venkataraman, Ahmed Sharkawy, GarrettJ. Schneider, and Janusz Murakowski, "Dispersion-based optical routing in photonic crystals," Opt. Lett. 29, 50-52 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. John, Phys. Rev. Lett. 58, 2486 (1987).
  2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
  3. D. W. Prather, A. Sharkawy, and S. Shouyuan, in Handbook of Nanoscience, Engineering, and Technology, W. A. Goddard III, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002), pp. 211–232.
  4. T. F. Krauss and T. Baba, eds., feature section on photonic crystal structures and applications, IEEE J. Quantum Electron. 38, 724–963 (2002).
  5. M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
  6. A. Taflove, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995).
  7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
  8. J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
  9. L. Wu, M. Mazilu, and T. F. Krauss, J. Lightwave Technol. 21, 561 (2003).
  10. D. W. Prather, J. Murakowski, S. Y. Shi, S. Venkataraman, A. Sharkawy, C. H. Chen, and D. Pustai, Opt. Lett. 27, 1601 (2002).
  11. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
  12. T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
  13. C. Chen, A. Sharkawy, D. M. Pustai, S. Shi, and D. W. Prather, Opt. Express 11, 3153 (2003), http://www.opticsexpress.org.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited