OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 10 — May. 14, 2004
  • pp: 1069–1071

Channel plasmon-polariton in a triangular groove on a metal surface

D. F. P. Pile and D. K. Gramotnev  »View Author Affiliations

Optics Letters, Vol. 29, Issue 10, pp. 1069-1071 (2004)

View Full Text Article

Acrobat PDF (748 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One-dimensional localized plasmons (channel polaritons) guided by a triangular groove on a metal substrate are investigated numerically by means of a finite-difference time-domain algorithm. Dispersion, existence conditions, and dissipation of these waves are analyzed. In particular, it is demonstrated that the localization of the predicted plasmons in acute grooves may be substantially stronger than what is allowed by the diffraction limit. As a result, the predicted waves may be significant for the development of new subwavelength waveguides and interconnectors for nano-optics and photonics.

© 2004 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(240.0240) Optics at surfaces : Optics at surfaces
(260.3910) Physical optics : Metal optics
(350.3950) Other areas of optics : Micro-optics

D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. R. Krenn, Nature Mater. 2, 210 (2003).
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
  3. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Opt. Lett. 23, 1331 (1998).
  4. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
  5. S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
  6. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
  7. P. Berini, Opt. Lett. 24, 1011 (1999).
  8. P. Berini, Phys. Rev. B 61, 10484 (2000).
  9. P. Berini, Phys. Rev. B 63, 125417 (2001).
  10. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, Opt. Lett. 25, 844 (2000).
  11. M. S. Kushwaha, Surf. Sci. Rep. 41, 1 (2001).
  12. T, Yatsui, M. Kougori, and M. Ohtsu, Appl. Phys. Lett. 79, 4583 (2001).
  13. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
  14. K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003).
  15. I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002).
  16. D. Christensen and D. Fowers, Biosens. Bioelectron. 11, 677 (1996).
  17. D. Fowers, “Modeling of dielectrics, metals, and surface plasmon resonance using the finite-difference time-domain method and the kinetic force equation,” M.S. thesis (University of Utah, Salt Lake City, Utah, 1994).
  18. G. Mur, IEEE Trans. Electromagn. Compat. 40, 100 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited