OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 11 — Jun. 1, 2004
  • pp: 1191–1193

Optical fiber humidity sensor based on evanescent-wave scattering

Lina Xu, Joseph C. Fanguy, Krunal Soni, and Shiquan Tao  »View Author Affiliations

Optics Letters, Vol. 29, Issue 11, pp. 1191-1193 (2004)

View Full Text Article

Acrobat PDF (654 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phenomenon of evanescent-wave scattering (EWS) is used to design an optical-fiber humidity sensor. Porous solgel silica (PSGS) coated on the surface of a silica optical-fiber core scatters evanescent waves that penetrate the coating layer. Water molecules in the gas phase surrounding the optical fiber can be absorbed into the inner surface of the pores of the porous silica. The absorbed water molecules form a thin layer of liquid water on the inner surface of the porous silica and enhance the EWS. The amount of water absorbed into the PSGS coating is in dynamic equilibrium with the water-vapor pressure in the gas phase. Therefore the humidity in the air can be quantitatively determined with fiber-optic EWS caused by the PSGS coating. The humidity sensor reported here is fast in response, reversible, and has a wide dynamic range. The possible interference caused by EWS to an optical-fiber gas sensor with a reagent-doped PSGS coating as a transducer is also discussed.

© 2004 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(290.5850) Scattering : Scattering, particles
(350.4990) Other areas of optics : Particles

Lina Xu, Joseph C. Fanguy, Krunal Soni, and Shiquan Tao, "Optical fiber humidity sensor based on evanescent-wave scattering," Opt. Lett. 29, 1191-1193 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. T. V. Grattan and B. T. Meggitt, eds., Chemical and Environmental Sensing, Vol. 4 of Optical Fiber Sensor Technology (Kluwer Academic, Dordrecht, The Netherlands, 1999).
  2. A. Messica, A. Greenstein, and A. Katzir, Appl. Opt. 35, 2274 (1996).
  3. R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Anal. Chem. 70, 1639 (1998).
  4. D. Bunimovich, E. Belotserkovsky, and A. Katzir, Rev. Sci. Instrum. 66, 2818 (1995).
  5. B. D. MacCraith, C. M. McDonagh, G. O'Keeffe, E. T. Keyes, J. G. Vos, B. O'Kelly, and J. McGilp, Analyst 118, 385 (1993).
  6. C. C. Wang, C. I. Li, Y. H. Lin, and L. K. Chau, Appl. Spectrosc. 54, 15 (2000).
  7. R. H. Uibel and J. M. Harris, Appl. Spectrosc. 54, 1868 (2000).
  8. I. S. Krull, R. Mhatre, and H. H. Stuting, TrAC Trends Anal. Chem. 8, 260 (1989).
  9. Y. S. Balin and I. A. Rasenkov, Proc. SPIE 2506, 201 (1995).
  10. J. Gao, K. F. Freed, and S. A. Rice, J. Chem. Phys. 93, 2785 (1990).
  11. B. H. Lin, S. A. Rice, and D. A. Weitz, J. Chem. Phys. 99, 8308 (1993).
  12. R. Jindal, S. Tao, J. P. Singh, and P. S. Gaikwad, Opt. Eng. 41, 1093 (2002).
  13. A. N. Asanov, W. W. Wilson, and P. B. Oldham, Anal. Chem. 70, 1156 (1998).
  14. S. Tao, C. B. Winstead, J. P. Singh, and R. Jindal, Opt. Lett. 27, 1382 (2002).
  15. K. J. Laidler and J. H. Meiser, eds., Physical Chemistry, 2nd ed. (Houghton Mifflin, Boston, 1995).
  16. A. P. Russell and K. S. Fletcher, Anal. Chim. Acta 170, 209 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited