OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 11 — Jun. 1, 2004
  • pp: 1221–1223

Delay differential equations for mode-locked semiconductor lasers

Andrei G. Vladimirov, Dmitry Turaev, and Gregory Kozyreff  »View Author Affiliations

Optics Letters, Vol. 29, Issue 11, pp. 1221-1223 (2004)

View Full Text Article

Acrobat PDF (148 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new model for passive mode locking that is a set of ordinary delay differential equations. We assume a ring-cavity geometry and Lorentzian spectral filtering of the pulses but do not use small gain and loss and weak saturation approximations. By means of a continuation method, we study mode-locking solutions and their stability. We find that stable mode locking can exist even when the nonlasing state between pulses becomes unstable.

© 2004 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.3100) Nonlinear optics : Instabilities and chaos

Andrei G. Vladimirov, Dmitry Turaev, and Gregory Kozyreff, "Delay differential equations for mode-locked semiconductor lasers," Opt. Lett. 29, 1221-1223 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. Vasil'ev, Ultrafast Diode Lasers: Fundamentals and Applications (Artech House, Norwood, Mass., 1995).
  2. G. H. C. New, IEEE J. Quantum Electron. QE-10, 115 (1974).
  3. H. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
  4. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, IEE Proc. Optoelectron. 147, 251 (2000).
  5. H. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
  6. H. Haus, Jpn. J. Appl. Phys. 20, 1007 (1981).
  7. H. A. Haus, C. V. Shank, and E. P. Ippen, Opt. Commun. 15, 29 (1975).
  8. J. C. Chen, H. A. Haus, and E. P. Ippen, IEEE J. Quantum Electron. 29, 1228 (1993).
  9. V. B. Khalfin, J. M. Arnold, and J. H. Marsh, IEEE J. Sel. Top. Quantum Electron. 1, 523 (1995).
  10. S. L. McCall and P. M. Platzman, IEEE J. Quantum Electron. QE-21, 1899 (1985).
  11. K. Engelborghs, T. Luzyanina, and G. Samaey, “DDE-BIFTOOL v.2.00:a Matlab package for bifurcation analysis of delay differential equations,” Tech. Rep. TW-330 (Department of Computer Science, Katholicke Universitet Leuven, Leuven, Belgium, 2001).
  12. J. Palaski and K. Y. Lau, Appl. Phys. Lett. 59, 7 (1991).
  13. T. Erneux, J. Opt. Soc. Am. B 5, 1063 (1988).
  14. R. Paschotta and U. Keller, Appl. Phys. B 73, 653 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited