OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 29, Iss. 11 — Jun. 1, 2004
  • pp: 1224–1226

Ultralow-threshold microcavity Raman laser on a microelectronic chip

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala  »View Author Affiliations


Optics Letters, Vol. 29, Issue 11, pp. 1224-1226 (2004)
http://dx.doi.org/10.1364/OL.29.001224


View Full Text Article

Acrobat PDF (724 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using ultrahigh- <i>Q</i> toroid microcavities on a chip, we demonstrate a monolithic microcavity Raman laser. Cavity photon lifetimes in excess of 100 ns combined with mode volumes typically of less than 1000(µm) <sup>3</sup> significantly reduce the threshold for stimulated Raman scattering. In conjunction with the high ideality of a tapered optical fiber coupling junction, stimulated Raman lasing is observed at an ultralow threshold (as low as 74µW of fiber-launched power at 1550 nm) with high efficiency (up to 45% at the critical coupling point) in good agreement with theoretical modeling. Equally important, the wafer-scale nature of these devices should permit integration with other photonic, mechanical, or electrical functionality on a chip.

© 2004 Optical Society of America

OCIS Codes
(190.5650) Nonlinear optics : Raman effect
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.5750) Optical devices : Resonators

Citation
T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, "Ultralow-threshold microcavity Raman laser on a microelectronic chip," Opt. Lett. 29, 1224-1226 (2004)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-11-1224


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
  2. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
  3. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities, Vol. 3 of Advanced Series in Applied Physics (World Scientific, Singapore, 1996).
  4. H. B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
  5. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
  6. M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
  7. H. A. Haus, Electromagnetic Fields and Energy (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  8. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
  9. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
  10. Veff≡(∫| E→p|2d V)/∫|E→ R|2dV)/∫| E→p|2 |E→R|2 dV and is approximately twice the mode volume.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited