Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermomechanical modification of diffraction gratings

Not Accessible

Your library or personal account may give you access

Abstract

The most accurate approaches to fabrication of diffraction gratings are known to be the lithographic and holographic methods. The lithographic methods allow fabrication of arbitrarily chirped gratings whose performance, however, is degraded by stitching errors. The holographic methods are free from stitching errors; however, they are limited in the achievable spatial variations of their grating periods. We suggest a method of diffraction grating modification by nonuniform heating and stretching that is much more flexible than the holographic approach and does not suffer from the problem of stitching error. We demonstrate our approach for quartz phase masks that have a characteristic grating period of 1 µm and a length of several centimeters. Our approach allows the grating periods of the phase masks to vary in a range from a few picometers to a few nanometers and a spatial resolution of a few millimeters. It is shown that the grating period can be modified with a negligible effect on the profile of the gratings.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Amplification of optical delay by use of matched linearly chirped fiber Bragg gratings

Changhuei Yang, Siavash Yazdanfar, and Joseph Izatt
Opt. Lett. 29(7) 685-687 (2004)

Group-delay ripple correction in chirped fiber Bragg gratings

M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, and C. Soccolich
Opt. Lett. 28(10) 777-779 (2003)

Filter characteristics of a chirped volume holographic grating

Seunghoon Han, Bong-Ahn Yu, Seunghwan Chung, Hwi Kim, Jungwook Paek, and Byoungho Lee
Opt. Lett. 29(1) 107-109 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved