OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 13 — Jul. 1, 2004
  • pp: 1542–1544

Time-domain mid-infrared frequency-comb spectrometer

Fritz Keilmann, Christoph Gohle, and Ronald Holzwarth  »View Author Affiliations

Optics Letters, Vol. 29, Issue 13, pp. 1542-1544 (2004)

View Full Text Article

Acrobat PDF (327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel type of Fourier-transform infrared spectrometer (FTIR) is demonstrated. It is based on two Ti:sapphire lasers emitting femtosecond pulse trains with slightly different repetition frequencies. Two mid-infrared beams—derived from those lasers by rectification in GaSe—are superimposed upon a detector to produce purely time-domain interferograms that encode the infrared spectrum. The advantages of this spectrometer compared with the common FTIR include ease of operation (no moving parts), speed of acquisition (100 μs demonstrated), and not-yet-shown collimated long-distance propagation, diffraction-limited microscopic probing, and electronically controllable chemometric factoring. Extending time-domain frequency-comb spectroscopy to lower (terahertz) or higher (visible, ultraviolet) frequencies should be feasible.

© 2004 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6340) Spectroscopy : Spectroscopy, infrared

Fritz Keilmann, Christoph Gohle, and Ronald Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542-1544 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. H. Auston and K. P. Cheung, J. Opt. Soc. Am. B 2, 606 (1985).
  2. A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
  3. R. A. Kaindl, D. C. Smith, M. Joschko, M. P. Hasselbeck, M. Woerner, and T. Elsaesser, Opt. Lett. 23, 861 (1998).
  4. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
  5. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, Nature 414, 286 (2001).
  6. D. van der Weide and F. Keilmann, “Coherent periodically pulsed radiation spectrometer,” U.S. patent 5,748,309 (May 5, 1998).
  7. D. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
  8. J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, Phys. Rev. Lett. 40, 847 (1978).
  9. T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
  10. R. Hillenbrand, T. Taubner, and F. Keilmann, Nature 418, 159 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited