OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 14 — Jul. 15, 2004
  • pp: 1689–1691

Simulation of mode-locked surface-emitting lasers through a finite-difference time-domain algorithm

Mayank Bahl, Hongling Rao, Nicolae C. Panoiu, and Richard M. Osgood, Jr.  »View Author Affiliations

Optics Letters, Vol. 29, Issue 14, pp. 1689-1691 (2004)

View Full Text Article

Acrobat PDF (571 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approach based on the finite-difference time-domain method is developed for simulating the dynamics of passive mode locking in vertical-cavity surface-emitting lasers (VCSELs). The material response is modeled by the effective semiconductor Bloch equations through a resonant polarization term in the Maxwell’s equations. Nonlinear gain saturation is incorporated through a gain compression factor in the equation governing the dynamics of the resonant polarization. An extended-cavity VCSEL with a quantum-well saturable absorber is simulated, and stable mode-locking pulses are obtained. Fine features of the spatial profile of the mode-locked pulses are also studied within this approach.

© 2004 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

Mayank Bahl, Hongling Rao, Nicolae C. Panoiu, and Richard M. Osgood, Jr., "Simulation of mode-locked surface-emitting lasers through a finite-difference time-domain algorithm," Opt. Lett. 29, 1689-1691 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. R. Hadley, Opt. Lett. 20, 1483 (1995).
  2. J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, Appl. Phys. Lett. 72, 1814 (1998).
  3. S. Riyopoulos, D. Dialetis, J. Inman, and A. Phillips, J. Opt. Soc. Am. B 18, 1268 (2001).
  4. W. B. Jiang, D. Derickson, R. Mirin, and J. E. Bowers, IEEE J. Quantum Electron. 29, 1309 (1993).
  5. W. Yang and A. Gopinath, Appl. Phys. Lett. 63, 2717 (1993).
  6. J. P. Seurin, G. Liu, D. C. Barnes, D. I. Babic, S. W. Corzine, and M. Tan, Microwave Opt. Technol. Lett. 18, 385 (1998).
  7. A. Nagra and R. York, IEEE Trans. Antennas Propag. 46, 334 (1998).
  8. H. Rao, “Optical electromagnetics simulation of strongly reflective structures of integrated photonics,” Ph.D. dissertation (Columbia University, New York, 2002).
  9. J. A. Gruetzmacher and N. F. Scherer, Opt. Lett. 28, 573 (2003).
  10. C. Ning, R. Indik, and J. Moloney, IEEE J. Quantum Electron. 33, 1543 (1997).
  11. W. W. Chow and S. W. Koch, in Semiconductor Laser Fundamentals (Springer, New York, 1999).
  12. K. Jasim, Q. Zhang, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, Electron. Lett. 39, 373 (2003).
  13. F. X. Kärtner, J. Aus der Au, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).
  14. S. W. Corzine, R. S. Geels, J. W. Scott, R. Yan, and L. A. Coldren, IEEE J. Quantum Electron. 25, 151 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited