OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 15 — Aug. 1, 2004
  • pp: 1796–1798

Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation

W. M. Lee, X.-C. Yuan, and W. C. Cheong  »View Author Affiliations

Optics Letters, Vol. 29, Issue 15, pp. 1796-1798 (2004)

View Full Text Article

Acrobat PDF (472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical dark traps such as Laguerre–Gaussian beams, modulated optical vortices, and high-order Bessel beams have been used in the micromanipulation of microparticles. Such optical traps are highly versatile, as they are able to trap both high- and low-index microparticles as well as to set them into rotation by use of the orbital angular momentum of light. Holography has been widely used to modulate the shape of an optical vortex for new optical traps. We show that, by designing the shape of a spiral phase plate and using electron-beam lithography for fabrication, one can modulate the amplitude and the phase of an optical vortex with respect to the specific shape of the spiral phase plate as required. Furthermore, to the best of our knowledge this is the first report of transferring orbital angular momentum from a spiral phase plate to an absorptive microparticle in an experiment. Hence, with this technique, optical dark traps can easily be designed and fabricated.

© 2004 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.7010) Lasers and laser optics : Laser trapping
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3950) Other areas of optics : Micro-optics

W. M. Lee, X.-C. Yuan, and W. C. Cheong, "Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation," Opt. Lett. 29, 1796-1798 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, Phys. Rev. A 65, 063402 (2002).
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
  3. K. T. Gahagan and G. A. Swartzlander, Jr., Opt. Lett. 21, 827 (1999).
  4. K. T. Gahagan and G. A. Swartzlander, J. Opt. Soc. Am. B 16, 533 (1999).
  5. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
  6. A. T. O'Neil and M. J. Padgett, Opt. Commun. 193, 45 (2001).
  7. W. M. Lee and X.-C. Yuan, Appl. Phys. Lett. 83, 5124 (2003).
  8. G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, Opt. Commun. 127, 183 (1996).
  9. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, Opt. Commun. 112, 321 (1994).
  10. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. 't Hooft, Appl. Opt. 43, 688 (2004).
  11. D. Ganic, X.-S. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankiovic, and T. Tschudi, Opt. Lett. 27, 1351 (2002).
  12. S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, Phys. Rev. A 66, 043801 (2002).
  13. D. W. Zhang and X.-C. Yuan, Opt. Lett. 28, 740 (2003).
  14. J. E. Curtis and D. G. Grier, Opt. Lett. 28, 872 (2003).
  15. V. Kudryashov, X.-C. Yuan, W. C. Cheong, and K. Radhakrishnan, Microelectron. Eng. 67–68, 306 (2003).
  16. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
  17. R. Dasgupta, S. K. Mohanty, and P. K. Gupta, Biotechnol. Lett. 25, 1625 (2003).
  18. M. J. Lang, P. M. Fordyce, and S. M. Block, J. Biol. 2, 6 (2003).
  19. D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, Opt. Commun. 214, 247 (2002).
  20. R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, Phys. Rev. Lett. 89, 097903 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited