OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 16 — Aug. 13, 2004
  • pp: 1888–1890

Polarization anisotropy in vertical-cavity semiconductor optical amplifiers

Michael Sánchez, Pengyue Wen, Matthias Gross, and Sadik Esener  »View Author Affiliations

Optics Letters, Vol. 29, Issue 16, pp. 1888-1890 (2004)

View Full Text Article

Acrobat PDF (320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The polarization-dependent gain (PDG) characteristics of a vertical-cavity semiconductor optical amplifier (VCSOA) are measured, and the case of the PDG is determined. It is often assumed that the polarization states of a VCSOA are degenerate because of the circular geometry of the device. This assumption is not true in practice, and it is found that VCSOAs possess a dominant linear polarization state and a small difference in frequency between polarization states. The difference in resonant frequencies causes the PDG of the VCSOA. Measurements of the polarization state show that the cause of the splitting is electro-optic birefringence.

© 2004 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(190.1450) Nonlinear optics : Bistability
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(230.5440) Optical devices : Polarization-selective devices
(260.1440) Physical optics : Birefringence

Michael Sánchez, Pengyue Wen, Matthias Gross, and Sadik Esener, "Polarization anisotropy in vertical-cavity semiconductor optical amplifiers," Opt. Lett. 29, 1888-1890 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Lewen, K. Streubel, A. Karlsson, and S. Rapp, IEEE Photon. Technol. Lett. 10, 1067 (1998).
  2. E. S. Bjorlin, B. Riou, P. Abraham, J. Piprek, Y. Y. Chiu, K. A. Black, A. Keating, and J. E. Bowers, IEEE J. Quantum Electron. 37, 274 (2001).
  3. P. Wen, M. Sanchez, M. Gross, and S. Esener, Opt. Express 10, 1273 (2002), http://www.opticsexpress.org.
  4. P. Wen, M. Sanchez, M. Gross, and S. Esener, Opt. Commun. 219, 383 (2003).
  5. T. Ohtoshi, T. Kuroda, A. Niwa, and S. Tsuji, Appl. Phys. Lett. 65, 1886 (1994).
  6. K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, Appl. Phys. Lett. 64, 2767 (1994).
  7. H. J. Unold, M. C. Riedl, R. Michalzik, and K. J. Ebeling, Electron. Lett. 38, 77 (2002).
  8. A. K. Jansen van Doorn, M. P. van Exter, and J. P. Woerdman, IEEE J. Quantum Electron. 34, 700 (1998).
  9. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984), p. 318.
  10. M. P. van Exter, A. K. Jansen van Doorn, and J. P. Woerdman, Phys. Rev. A 56, 845 (1997).
  11. A. K. Jansen van Doorn, M. P. van Exter, A. M. van Der Lee, and J. P. Woerdman, Phys. Rev. A 55, 1473 (1997).
  12. M. S. Miguel, Q. Feng, and J. V. Moloney, Phys. Rev. A 52, 1728 (1995).
  13. R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, Appl. Phys. Lett. 71, 2599 (1997).
  14. M. Sanchez, P. Wen, M. Gross, and S. Esener, IEEE Photon. Technol. Lett. 15, 507 (2003).
  15. D. Clarke and J. Grainger, Polarized Light and Optical Measurement (Pergamon, New York, 1971).
  16. S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (World Scientific, Teaneck, N.J., 1994), p. 675.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited