OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 17 — Sep. 1, 2004
  • pp: 1992–1994

Surface plasmon polariton propagation in nanoscale metal gap waveguides

Bing Wang and Guo Ping Wang  »View Author Affiliations

Optics Letters, Vol. 29, Issue 17, pp. 1992-1994 (2004)

View Full Text Article

Acrobat PDF (506 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on finite-difference time-domain simulation of the propagation characteristics of surface plasmon polaritons (SPPs) in optical circuits made from metal gap waveguides (MGWs) with nanometric gap widths, we theoretically demonstrate that two structures that consist of splitting and recombining MGWs and of coupling MGWs can be used as nanoscale Mach–Zehnder interferometers. MGW arrays show capabilities for array imaging and for controlling the flow of SPPs. Other potential applications of coupling MGWs, as SPP switches, directional couplers, and even as a nanoscale counterpart for observing linear and nonlinear dynamic behavior of electromagnetic fields, are also predicted and discussed. Our results point to an interesting way to manipulate optical signals and provide efficient sensing in nanophotonic architectures.

© 2004 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(350.5500) Other areas of optics : Propagation

Bing Wang and Guo Ping Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992-1994 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, Appl. Phys. Lett. 79, 1076 (2001).
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003), and references therein.
  4. K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003).
  5. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  6. I. P. Kaminow, W. L. Mammel, and H. P. Weber, Appl. Opt. 13, 396 (1974).
  7. G. Mur, IEEE Trans. Electromagn. Compat. EMC-23, 377 (1981).
  8. H. A. Haus and L. Molter-Orr, IEEE J. Quantum Electron. QE-19, 840 (1983).
  9. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1984).
  10. S. A. Darmanyan and A. V. Zayats, Phys. Rev. B 67, 035424 (2003).
  11. H. Raether, Surface Plasmon (Springer-Verlag, Berlin, 1988).
  12. J. Topol'ancik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, Appl. Phys. Lett. 82, 1143 (2003).
  13. Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reirer, V. Chin, S. N. Bhatia, and M. J. Sailor, Science 299, 2045 (2003).
  14. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998).
  15. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003), and references therein.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited