OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 29, Iss. 17 — Sep. 1, 2004
  • pp: 2004–2006

Sample-inverted reflow technique for fabrication of a revolved-hyperboloid microlens array in hybrid solgel glass

Miao He, Xiaocong Yuan, and Jing Bu  »View Author Affiliations


Optics Letters, Vol. 29, Issue 17, pp. 2004-2006 (2004)
http://dx.doi.org/10.1364/OL.29.002004


View Full Text Article

Acrobat PDF (246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel fabrication method, which is referred to as the sample-inverted reflow technique, to fabricate a refractive microlens array (MLA) with a revolved-hyperboloid profile in a solgel material. The fabricated solgel MLA demonstrates an excellent smooth profile with a fabrication error much less than the difference between the revolved hyperboloid and the spherical surface. In an application of coupling a laser diode (LD) to a single-mode fiber (SMF), we propose a two-MLA coupling scheme in which two revolved-hyperboloid MLAs are used between the LD and the SMF. In this configuration the coupling efficiency achieves 81.7% (-0.88 dB) .

© 2004 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication

Citation
Miao He, Xiaocong Yuan, and Jing Bu, "Sample-inverted reflow technique for fabrication of a revolved-hyperboloid microlens array in hybrid solgel glass," Opt. Lett. 29, 2004-2006 (2004)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-17-2004


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Eugene, Optics (Addison-Wesley, San Francisco, 2002), pp. 149–155.
  2. W. B. Veldkamp, Proc. SPIE 1544, 287 (1991).
  3. M. E. Motamedi, A. P. Andrews, and W. J. Gunning, Opt. Eng. 33, 3616 (1994).
  4. T. Suleski and D. O’Shea, Appl. Opt. 34, 7507 (1995).
  5. M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, Opt. Lett. 28, 731 (2003).
  6. M. He, X.-C. Yuan, N. Q. Ngo, W. C. Cheong, and J. Bu, Appl. Opt. 42, 7174 (2003).
  7. D. Blac, S. Pelissier, K. Saravanamuttu, S. I. Najafi, and M. P. Andrews, Adv. Mater. 11, 1508 (1999).
  8. J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, and N. Peyghambarian, Electron. Lett. 34, 455 (1998).
  9. K. Kintaka, J. Nishii, and N. Tohge, Appl. Opt. 39, 489 (2000).
  10. H. Karstensen, J. Opt. Commun. 9, 42 (1988).
  11. M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, Opt. Express 11, 1621 (2003), http://www.opticsexpress.org.
  12. P. Chanclou, M. Thual, J. Lostec, D. Pavy, and M. Gadonna, Opt. Eng. 39, 387 (2000).
  13. F. A. Rahman, K. Takahashi, and C. H. Teik, Opt. Commun. 208, 103 (2002).
  14. V. S. Shah, L. Curtis, R. S. Vodhabel, D. P. Bour, and W. C. Young, IEEE J. Lightwave Technol. 8, 1313 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited