OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 17 — Sep. 1, 2004
  • pp: 2046–2048

Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production

Mark Cronin-Golomb  »View Author Affiliations

Optics Letters, Vol. 29, Issue 17, pp. 2046-2048 (2004)

View Full Text Article

Acrobat PDF (558 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cascaded nonlinear optical interactions are analyzed for their potential to overcome quantum-defect related limitations on the efficiency of terahertz wave difference-frequency generation. The dispersion of ZnTe permits phase-matched production of a series of Stokes lines from two initial near-infrared beams. As the pump beams run down the Stokes ladder, the number of terahertz photons continually increases. A potential improvement by a factor of 5 is demonstrated in a 0.26-cm-long crystal by use of 25-MW/mm2 pumps at a wavelength of 824 nm.

© 2004 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.4320) Optical devices : Nonlinear optical devices

Mark Cronin-Golomb, "Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production," Opt. Lett. 29, 2046-2048 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. B. Khurgin, A. Obeidat, S. J. Lee, and Y. J. Ding, J. Opt. Soc. Am. B 14, 1977 (1997).
  2. R. Schiek, J. Opt. Soc. Am. B 10, 1848 (1993).
  3. J. P. Caumes, L. Videau, C. Rouyer, and E. Freysz, Phys. Rev. Lett. 89, 047401 (2002).
  4. E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, J. Opt. Soc. Am. B 8, 1626 (1991).
  5. C. Reiser, T. D. Raymond, and R. B. Michie, J. Opt. Soc. Am. B 8, 562 (1991).
  6. S. A. Babin, D. V. Churkin, and E. V. Podivilov, Opt. Commun. 226, 329 (2003).
  7. A. L. Y. Low, S. F. Chen, and W. M. Wong, Opt. Quantum Electron. 35, 1055 (2003).
  8. Z. P. Chu, U. N. Singh, and T. D. Wilkerson, Appl. Opt. 30, 4350 (1991).
  9. A. Ben-Bassat, A. Gordon, and B. Fischer, Ukr. J. Phys. 49, 496 (2004).
  10. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp 398–399.
  11. M. Schall, M. Walther, and P. U. Jepsen, Phys. Rev. B 64, 094301 (2001).
  12. A. Nahata, H. Cao, and T. F. Heinz, IEEE Circuits Devices Mag. 18, 32 (2002).
  13. W. Shi and Y. J. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).
  14. W. Shi, Y. J. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
  15. L. Ward, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, Calif., 1998), Vol. II, pp. 737–758.
  16. Sellmeier relation from Cleveland Crystals, Inc., Highland Heights, Ohio, and Department of Physics, University of Strathclyde, Strathclyde, UK; http://phys.strath.ac.uk/12-503b2/introduction/dispers/definitions.nb.
  17. G. Gallot, J. Q. Zhang, R. W. Mcgowan, T. I. Jeon, and D. Grischkowsky, Appl. Phys. Lett. 74, 3450 (1999).
  18. T. Hattori, Y. Homma, and A. Mitsuishi, Opt. Commun. 7, 229 (2004).
  19. R. E. Nahory and H. Y. Fan, Phys. Rev. 156, 825 (1967).
  20. The computations reported in this Letter were performed with Mathematica software (Wolfram Research, Inc., Champaign, Ill.).
  21. T. Yuan, J. Z. Xu, and X. C. Zhang, International Workshop on Infrared Microscopy and Spectrocopy Lake Tahoe, Nev., 2003.
  22. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, Opt. Lett. 24, 1065 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited