OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 29, Iss. 19 — Oct. 1, 2004
  • pp: 2219–2221

Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay

Nan-Kuang Chen, Sien Chi, and Shiao-Min Tseng  »View Author Affiliations


Optics Letters, Vol. 29, Issue 19, pp. 2219-2221 (2004)
http://dx.doi.org/10.1364/OL.29.002219


View Full Text Article

Acrobat PDF (324 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is known that dispersive fiber has an LP01 mode cutoff wavelength that acts as a wavelength filter. With a dispersive polysiloxane polymer overlay on a side-polished single-mode fiber, an in-line tunable fiber short-pass filter with a tuning range of ∼400 nm (1250–1650 nm) and a temperature variation of 15 °C was demonstrated. The rejection efficiency was greater than 50 dB, whereas the insertion and polarization-dependent losses were below 0.26 and 0.09 dB, respectively.

© 2004 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(160.5470) Materials : Polymers
(230.1150) Optical devices : All-optical devices
(240.7040) Optics at surfaces : Tunneling
(260.2030) Physical optics : Dispersion

Citation
Nan-Kuang Chen, Sien Chi, and Shiao-Min Tseng, "Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay," Opt. Lett. 29, 2219-2221 (2004)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-19-2219


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. McCallion, W. Johnstone, and G. Fawcett, Opt. Lett. 19, 542 (1994).
  2. S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, Opt. Lett. 22, 606 (1997).
  3. W. V. Sorin and M. H. Yu, Opt. Lett. 10, 550 (1985).
  4. F. Pan, K. McCallion, and M. Chiappetta, Appl. Phys. Lett. 74, 492 (1999).
  5. S. S. Johal, S. W. James, R. P. Tatam, and G. J. Ashwell, Opt. Lett. 24, 1194 (1999).
  6. D. Flannery, S. W. James, R. P. Tatam, and G. J. Ashwell, Opt. Lett. 22, 567 (1997).
  7. G. Raizada and B. P. Pal, Opt. Lett. 21, 399 (1996).
  8. J. W. Yu and K. Oh, Opt. Commun. 204, 111 (2002).
  9. K. Morishita, J. Lightwave Technol. 7, 198 (1989).
  10. K. Morishita, J. Lightwave Technol. 7, 816 (1989).
  11. J. Nishimura and K. Morishita, IEEE J. Sel. Top. Quantum Electron. 5, 1260 (1999).
  12. M. Tammer, R. W. T. Higgins, and A. P. Monkman, J. Appl. Phys. 91, 4010 (2002).
  13. H. R. Stuart, Science 289, 281 (2000).
  14. N. K. Chen, S. Chi, and S. M. Tseng, Jpn. J. Appl. Phys. 43, L475 (2004).
  15. O. Leminger and R. Zengerle, Opt. Lett. 12, 211 (1987).
  16. A. K. Das, M. A. Mondal, A. Mukherjee, and A. K. Mandal, Opt. Lett. 19, 384 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited