OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 19 — Oct. 1, 2004
  • pp: 2222–2224

Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings

G. Z. Xiao, P. Zhao, F. G. Sun, Z. G. Lu, Zhiyi Zhang, and C. P. Grover  »View Author Affiliations

Optics Letters, Vol. 29, Issue 19, pp. 2222-2224 (2004)

View Full Text Article

Acrobat PDF (360 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We evaluate a wavelength interrogation technique based on an arrayed waveguide grating (AWG). Initial results show that the Bragg wavelength of fiber Bragg grating (FBG) sensors can be precisely interrogated by thermally scanning an AWG-based demultiplexer. The technique potentially offers a low-cost, compact, and high-performance solution for the interrogation of FBG distributed sensors and multisensor arrays.

© 2004 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar

G. Z. Xiao, P. Zhao, F. G. Sun, Z. G. Lu, Zhiyi Zhang, and C. P. Grover, "Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings," Opt. Lett. 29, 2222-2224 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. K. Smit and C. V. Dan, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
  2. A. Kaneko, A. Sugita, and K. Okamoto, IEICE Trans. Electron. 83, 860 (2000).
  3. Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, A. Sugita, and A. Himeno, Electron. Lett. 37, 576 (2001).
  4. P. Niewczas, L. Dziuda, G. Fusiek, A. J. Willshire, J. R. McDonald, G. Thursby, D. Harvey, and W. C. Michie, IEEE Trans. Instrum. Meas. 52, 1092 (2003).
  5. A. J. Willshire, P. Niewczas, L. Dziuda, G. Fusiek, and J. R. McDonald, IEEE Trans. Instrum. Meas. 53, 4 (2004).
  6. Y. Sano and T. Yoshino, J. Lightwave Technol. 21, 132 (2003).
  7. D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, Electron. Lett. 39, 1714 (2003).
  8. W. Li, D. C. Abeysinghe, and J. T. Boyd, Opt. Eng. 42, 431 (2003).
  9. Y. Komai, K. Kodate, K. Okamoto, and T. Kamiya, in Proceedings of the Ninth Microoptics Conference (Japan Society of Applied Physics, Tokyo, Japan, 2003), pp. 194–197.
  10. Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, Electron. Lett. 33, 1945 (1997).
  11. Y.-J. Rao, in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, eds. (Chapman & Hall, London, 1998), Vol. 2, pp. 335–389.
  12. T. Miya, IEEE J. Sel. Top. Quantum Electron. 6, 38 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited