OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 2 — Jan. 15, 2004
  • pp: 144–146

Ince Gaussian beams

Miguel A. Bandres and JulioC. Gutiérrez-Vega  »View Author Affiliations

Optics Letters, Vol. 29, Issue 2, pp. 144-146 (2004)

View Full Text Article

Acrobat PDF (428 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the existence of the Ince–Gaussian beams that constitute the third complete family of exact and orthogonal solutions of the paraxial wave equation. Their transverse structure is described by the Ince polynomials and has an inherent elliptical symmetry. Ince–Gaussian beams constitute the exact and continuous transition modes between Laguerre and Hermite–Gaussian beams. The propagating characteristics are discussed as well.

© 2004 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3410) Lasers and laser optics : Laser resonators
(260.1960) Physical optics : Diffraction theory
(350.5500) Other areas of optics : Propagation

Miguel A. Bandres and JulioC. Gutiérrez-Vega, "Ince Gaussian beams," Opt. Lett. 29, 144-146 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  2. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1964), Chap. 19.
  3. F. M. Arscott, Periodic Differential Equations (Pergamon, Oxford, 1964).
  4. F. M. Arscott, Proc. R. Soc. Edinburgh Sect. A 67, 265 (1967).
  5. I. Kimel and L. R. Elías, IEEE J. Quantum Electron. 29, 2562 (1993).
  6. C. P. Boyer, E. G. Kalnins, and W. Miller, Jr., J. Math. Phys. 16, 512 (1975).
  7. S. Chávez-Cerda, G. S. McDonald, and G. H. C. New, Opt. Commun. 123, 225 (1996).
  8. S. Chávez-Cerda, J. C. Gutiérrez-Vega, and G. H. C. New, Opt. Lett. 26, 1803 (2001).
  9. J. Arlt and M. J. Padgett, Opt. Lett. 25, 191 (2000).
  10. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
  11. H. Sasada and M. Okamoto, Phys. Rev. A 68, 012323 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited