OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 20 — Oct. 15, 2004
  • pp: 2333–2335

Static point-spread function correction dominating higher-order speckle terms at high adaptive correction

E. E. Bloemhof  »View Author Affiliations

Optics Letters, Vol. 29, Issue 20, pp. 2333-2335 (2004)

View Full Text Article

Acrobat PDF (173 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



At high adaptive correction, the randomly shifting speckles familiar in conventional astronomical imaging become organized into patterns with distinct regularities that may permit partial suppression of the image noise they produce. Mathematically, the phase exponential in the Fourier-optical imaging expression may be expanded in a Taylor series in remnant phase φ, which is small at very high correction, leading to a perturbed point-spread function (PSF) that is a sum of algebraic terms, each of distinct spatial symmetry. At sufficiently high correction, one need deal with only a few of the lowest-order terms. A first-order expansion gives an ideal PSF plus two terms, linear and quadratic, describing the two brightest, physically most relevant kinds of speckle. A second-order expansion gives three new terms, the brightest of which is primarily a static correction to the PSF, with a much smaller true speckle component. When the correction is great enough to isolate individual speckle terms, the two terms from the first-order expansion alone determine the essential physics. A general observational strategy is outlined for reducing speckle noise in highly corrected companion searches, dominated by a few speckle terms of definite spatial symmetry.

© 2004 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(030.6140) Coherence and statistical optics : Speckle
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(350.1270) Other areas of optics : Astronomy and astrophysics

E. E. Bloemhof, "Static point-spread function correction dominating higher-order speckle terms at high adaptive correction," Opt. Lett. 29, 2333-2335 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Troy, R. G. Dekany, B. R. Oppenheimer, E. E. Bloemhof, T. Trinh, F. Dekens, F. Shi, T. L. Hayward, and B. Brandl, Proc. SPIE 4007, 31 (2000).
  2. D. T. Gavel, C. E. Max, S. S. Olivier, B. Bauman, D. M. Pennington, B. A. Macintosh, J. Patience, C. G. Brown, P. M. Danforth, and R. L. Hurd, Proc. SPIE 4494, 336 (2002).
  3. A. M. Lagrange, G. Chauvin, T. Fusco, E. Gendron, D. Rouan, M. Hartung, F. Lacombe, D. Mouillet, G. Rousset, P. Drossart, R. Lenzen, C. Moutou, W. Brandner, N. Hubin, Y. Clénet, A. Stolte, R. Schoedel, G. Zins, and J. Spyromilio, Proc. SPIE 4841, 860 (2003).
  4. J. R. P. Angel, Nature 368, 203 (1994).
  5. E. E. Bloemhof, Astrophys. J. 582, L59 (2003).
  6. R. Racine, G. A. H. Walker, D. Nadeau, R. Doyon, and C. Marois, Publ. Astron. Soc. Pac. 111, 587 (1999).
  7. G. Schneider and M. Silverstone, Proc. SPIE 4860, 1 (2003).
  8. A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, and B. A. Macintosh, Astrophys. J. 581, L59 (2002).
  9. E. E. Bloemhof, Astrophys. J. 610, L69 (2004).
  10. J. M. Beckers, Annu. Rev. Astron. Astrophys. 31, 13 (1993).
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  12. E. E. Bloemhof, R. G. Dekany, M. Troy, and B. R. Oppenheimer, Astrophys. J. 558, L71 (2001).
  13. A. Sivaramakrishnan, P. E. Hodge, R. B. Makidon, M. D. Perrin, J. P. Lloyd, E. E. Bloemhof, and B. R. Oppenheimer, Proc. SPIE 4860, 161 (2003).
  14. M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R. Oppenheimer, and J. R. Graham, Astrophys. J. 596, 702 (2003).
  15. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1986).
  16. D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, Publ. Astron. Soc. Pac. 112, 1479 (2000).
  17. E. E. Bloemhof, Opt. Lett. 29, 159 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited