Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temporal compression of short-wavelength laser pulses by coherent control in rare gases

Not Accessible

Your library or personal account may give you access

Abstract

We present a theoretical study of temporal compression of a short-wavelength laser pulse predicted in a real, Doppler-broadened, atomic system. The compression is the result of the coherent control peculiarities of electromagnetically induced transparency-propagation dynamics. Numerical results are reported and discussed, showing a temporal compression of 2 orders of magnitude (from 10 ns to 100 ps) of a 106.7-nm laser pulse in argon atoms at room temperature.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Absorption resonance and large negative delay in rubidium vapor with a buffer gas

Eugeniy E. Mikhailov, Vladimir A. Sautenkov, Yuri V. Rostovtsev, and George R. Welch
J. Opt. Soc. Am. B 21(2) 425-428 (2004)

Efficient hyper-Raman scattering in resonant coherent media

Ying Wu, Lingling Wen, and Yifu Zhu
Opt. Lett. 28(8) 631-633 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.