OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 21 — Nov. 1, 2004
  • pp: 2461–2463

Time-domain fiber laser hydrogen sensor

Yu. O. Barmenkov, A. Ortigosa-Blanch, A. Diez, J. L. Cruz, and M. V. Andrés  »View Author Affiliations

Optics Letters, Vol. 29, Issue 21, pp. 2461-2463 (2004)

View Full Text Article

Acrobat PDF (623 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a novel scheme for a fiber-optic hydrogen sensor based on an erbium-doped fiber laser with a palladium-coated tapered fiber within the laser cavity. The tapered fiber acts as a hydrogen-sensing element. When the sensing element is exposed to a hydrogen atmosphere, its attenuation decreases, changing the cavity losses and leading to a modification of the laser transient. The hydrogen concentration is obtained by simple measurement of the buildup time of the laser. This technique translates the measurement of hydrogen concentration into the time domain, and it can be extended to many intensity-based fiber sensors. Relative variations in the buildup time of up to 55% at an increase of the hydrogen concentration from 0 to 10% are achieved with a resolution of better than 0.1%.

© 2004 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3510) Lasers and laser optics : Lasers, fiber
(280.3420) Remote sensing and sensors : Laser sensors

Yu. O. Barmenkov, A. Ortigosa-Blanch, A. Diez, J. L. Cruz, and M. V. Andrés, "Time-domain fiber laser hydrogen sensor," Opt. Lett. 29, 2461-2463 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. O'Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
  2. M. Gupta, H. Jiao, and A. O'Keefe, Opt. Lett. 27, 1878 (2002).
  3. C. Wang and S. T. Scherer, Opt. Lett. 29, 352 (2004).
  4. C. Christofides and A. Mandelis, J. Appl. Phys. 68, R1 (1990).
  5. S. M. Adler-Golden, N. Goldstein, F. Bien, M. W. Matthew, M. E. Gersh, W. K. Cheng, and F. W. Adams, Appl. Opt. 31, 831 (1992).
  6. P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, Sens. Actuators B 74, 168 (2001).
  7. M. A. Butler and D. S. Ginley, J. Appl. Phys. 64, 3706 (1988).
  8. M. A. Butler, Sens. Actuators B 22, 155 (1994).
  9. J. Hernandez-Cordero and T. F. Morse, IEICE Trans. Electron. 83, 371 (2000).
  10. G. Steward, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2002).
  11. Y. Zhang, M. Zhang, and W. Jin, Sens. Actuators A 104, 183 (2003).
  12. A. E. Siegman, Lasers, 4th ed. (University Science, Mill Valley, Calif., 1986).
  13. I. J. Sola, J. C. Martín, J. M. Álvarez, and S. Jarabo, Opt. Commun. 193, 133 (2001).
  14. J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, Electron. Lett. 37, 1011 (2001).
  15. J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, IEEE Sensors J. 3, 533 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited