OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 21 — Nov. 1, 2004
  • pp: 2509–2511

Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect

Todd W. Murray, Lei Sui, Gopi Maguluri, Ronald A. Roy, Alex Nieva, Florian Blonigen, and Charles A. DiMarzio  »View Author Affiliations

Optics Letters, Vol. 29, Issue 21, pp. 2509-2511 (2004)

View Full Text Article

Acrobat PDF (367 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrasound-modulated optical tomography is a dual-wave sensing technique in which diffusive light in a turbid medium interacts with an imposed acoustic field. A phase-modulated photon field emanates from the interaction region and carries with it information about the optomechanical properties of the medium. We present a technique for detection of ultrasound-induced optical phase modulation using an adaptive, photorefractive-crystal-based interferometry system. Experimental results are presented demonstrating detection of ultrasound-modulated signals in highly scattering media by use of pulsed ultrasound insonation.

© 2004 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(110.7170) Imaging systems : Ultrasound
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(160.5320) Materials : Photorefractive materials
(170.3880) Medical optics and biotechnology : Medical and biological imaging

Todd W. Murray, Lei Sui, Gopi Maguluri, Ronald A. Roy, Alex Nieva, Florian Blonigen, and Charles A. DiMarzio, "Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect," Opt. Lett. 29, 2509-2511 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. V. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE Press, Bellingham, Wash., 2002).
  2. L. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
  3. F. A. Marks, H. W. Tomlinson, and G. W. Brooksy, Proc. SPIE 1888, 500 (1993).
  4. L. Wang, S. L. Jacques, and X. Zhao, Opt. Lett. 20, 629 (1995).
  5. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, J. Opt. Soc. Am. A 14, 1151 (1997).
  6. S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, Opt. Lett. 24, 181 (1999).
  7. R. K. Ing and J. P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
  8. T. W. Murray, H. Tuovinen, and S. Krishnaswamy, Appl. Opt. 39, 3276 (2000).
  9. P. Delaye, L. A. Montmorillon, and G. Roosen, Opt. Commun. 118, 154 (1995).
  10. J. P. Huignard and A. Marrakchi, Opt. Lett. 6, 622 (1981).
  11. P. Yu, D. D. Nolte, and M. R. Melloch, Opt. Lett. 28, 819 (2003).
  12. D. Dolfi and F. Micheron, “Imaging process and system for transillumination with photon frequency marking,” international patent WO 89/00278 (January 12, 1989).
  13. L. Wang and G. Ku, Opt. Lett. 23, 975 (1998).
  14. A. Lev and B. G. Sfez, Opt. Lett. 28, 1549 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited