OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 22 — Nov. 15, 2004
  • pp: 2620–2622

Rayleigh scattering cross sections of combustion species at 266, 355, and 532 nm for thermometry applications

Jeffrey A. Sutton and James F. Driscoll  »View Author Affiliations

Optics Letters, Vol. 29, Issue 22, pp. 2620-2622 (2004)

View Full Text Article

Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Rayleigh scattering cross sections are measured for nine combustion species (Ar, N2, O2, CO2, CO, H2, H2O, CH4, and C3H8) at wavelengths of 266, 355, and 532 nm and at temperatures ranging from 295 to 1525 K. Experimental results show that, as laser wavelengths become shorter, polarization effects become important and the depolarization ratio of the combustion species must be accounted for in the calculation of the Rayleigh scattering cross section. Temperature effects on the scattering cross section are also measured. Only a small temperature dependence is measured for cross sections at 355 nm, resulting in a 2–8% increase in cross section at temperatures of 1500 K. This temperature dependence increases slightly for measurements at 266 nm, resulting in a 5–11% increase in cross sections at temperatures of 1450 K.

© 2004 Optical Society of America

OCIS Codes
(290.5840) Scattering : Scattering, molecules
(290.5870) Scattering : Scattering, Rayleigh

Jeffrey A. Sutton and James F. Driscoll, "Rayleigh scattering cross sections of combustion species at 266, 355, and 532 nm for thermometry applications," Opt. Lett. 29, 2620-2622 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, 1996).
  2. F. Zhao and H. Hiroyasu, Prog. Energy Combust. Sci. 19, 447 (1993).
  3. L. V. King, Proc. R. Soc. London Ser. A 104, 333 (1923).
  4. J. Fielding, J. H. Frank, S. A. Kaiser, M. D. Smooke, and M. B. Long, Proc. Combust. Inst. 29, 2703 (2002).
  5. P. W. Atkins, Physical Chemistry, 4th ed. (Freeman, New York, 1990).
  6. W. M. Pitts and T. Kashiwagi, J. Fluid Mech. 141, 391 (1984).
  7. W. Reckers, Y. Gu, E. W. Rothe, and H. Voges, Appl. Spectrosc. 51, 1012 (1997).
  8. G. S. Kim, L. M. Hitchcock, F. Siegler, E. W. Rothe, C. C. Tung, and G. P. Reck, Appl. Phys. B 56, 139 (1993).
  9. U. Hohm and K. Kerl, Mol. Phys. 58, 541 (1986).
  10. R. B. Miles, J. J. Connors, P. J. Howard, E. C. Markovitz, and G. J. Roth, Opt. Lett. 13, 195 (1988).
  11. S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, Appl. Opt. 32, 6167 (1993).
  12. F. H. Myhr, “Optical measurements of atomic oxygen concentration, temperature and nitric oxide production rate in flames,” Ph.D. dissertation (University of Michigan, Ann Arbor, Mich., 1998).
  13. I. Namer and R. W. Schefer, Exp. Fluids 3, 1 (1985).
  14. T. M. Dyer, AIAA J. 17, 912 (1979).
  15. H. Naus and W. Ubachs, Opt. Lett. 25, 347 (2000).
  16. W. C. Gardiner, Jr., Y. Hidaka, and T. Tanzawa, Combust. Flame 40, 213 (1981).
  17. P. L. Smith, M. C. E. Huber, and W. H. Parkinson, Phys. Rev. A 13, 1422 (1976).
  18. Landolt-Börnstein, Tabellen, Eigenschaften der Materie inhren Aggregatzuständen, Part 8, Optische Konstanten (Springer-Verlag, Berlin, 1962).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited