OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 29, Iss. 23 — Dec. 1, 2004
  • pp: 2758–2760

Unidirectional lasing from a microcavity with a rounded isosceles triangle shape

M. S. Kurdoglyan, Soo-Young Lee, Sunghwan Rim, and Chil-Min Kim  »View Author Affiliations


Optics Letters, Vol. 29, Issue 23, pp. 2758-2760 (2004)
http://dx.doi.org/10.1364/OL.29.002758


View Full Text Article

Acrobat PDF (1078 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report that unidirectional lasing emission can be generated from a rounded isosceles triangular microcavity within a low nkD range, where n is the refractive index, k is the vacuum wave number, and D is the characteristic size of the microcavity. It is shown that unidirectional resonance modes have relatively high-Q values and in a nonlinear dynamic model appear as stationary lasing solutions with a low threshold. The formation of a whispering-gallery-type pattern along the rounded part on the symmetry axis is responsible for the unidirectionality of the resonances.

© 2004 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.5960) Lasers and laser optics : Semiconductor lasers

Citation
M. S. Kurdoglyan, Soo-Young Lee, Sunghwan Rim, and Chil-Min Kim, "Unidirectional lasing from a microcavity with a rounded isosceles triangle shape," Opt. Lett. 29, 2758-2760 (2004)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-23-2758


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. K. Chang and A. J. Campillo, eds. Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  2. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
  3. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993).
  4. L. Collot, V. Lefevreseguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
  5. J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997).
  6. H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, and A. D. Stone, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” July 31, 2003, arXiv:physics/0308001, http://xxx.lanl.gov.
  7. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, Appl. Phys. Lett. 83, 1710 (2003).
  8. The boundary shape is given in polar coordinates as follows: r(f)=r0[1+(e /2p)f], where e is the deformation parameter and r0 is the radius of the spiral at f=0. The shape jumps back to r0 at f=2p, creating a notch.
  9. J. Wiersig, J. Opt. A Pure Appl. Opt. 5, 53 (2003).
  10. H. P. Baltes and E. R. Hilf, Spectra of Finite Systems (Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1976).
  11. T. Harayama, P. Davis, and K. S. Ikeda, Phys. Rev. Lett. 90, 063901 (2003).
  12. T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, Phys. Rev. Lett. 91, 073903 (2003).
  13. S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, Phys. Rev. A 70, 023809 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited