OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 6 — Mar. 15, 2004
  • pp: 533–535

Replica-molded high-Q polymer microresonators

Andrea L. Martin, Deniz K. Armani, Lan Yang, and Kerry J. Vahala  »View Author Affiliations

Optics Letters, Vol. 29, Issue 6, pp. 533-535 (2004)

View Full Text Article

Acrobat PDF (620 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrahigh-Q microtoroids on a chip are applied as replication masters to demonstrate replica-molded high-Q microresonator arrays. Replica Q factors are nearly material loss limited, affirming the integrity of the replication process, and are as high as 5×106 , or nearly a factor of 40 greater than previous polymer-based devices. Because the molding process is nondestructive, both the master and the molds can be reused. Additionally, by using a novel optical polymer (Vicast), we demonstrate storage of high-Q microresonators in the mold for weeks, providing a method to preserve the whispering-gallery Q factor.

© 2004 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.5750) Optical devices : Resonators

Andrea L. Martin, Deniz K. Armani, Lan Yang, and Kerry J. Vahala, "Replica-molded high-Q polymer microresonators," Opt. Lett. 29, 533-535 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
  2. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
  4. K. J. Vahala, Nature 424, 839 (2003).
  5. D. K. Armani, T. J. Kippenberg, and S. M. Spillane, Nature 421, 925 (2003).
  6. E. Kim, Y. Xia, and G. M. Whitesides, Nature 376, 581 (1995).
  7. A. Folch, Trans. ASME 121, 28 (1999).
  8. T. Thorsen, S. J. Maerkl, and S. R. Quake, Science 298, 580 (2002).
  9. B. G. Splawn and F. E. Lytle, Anal. Bioanal. Chem. 373, 519 (2002).
  10. J. A. Herlocker, C. Fuentes-Hernandez, J. F. Wang, N. Peyghambarian, B. Kippelen, Q. Zhang, and S. R. Marder, Appl. Phys. Lett. 80, 1156 (2002).
  11. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
  12. M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
  13. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043092 (2003).
  14. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, J. Lightwave Technol. 20, 1968 (2002).
  15. R. J. Bovin, Dow Corning, Inc., Midland, Mich. (personal communication, 2003).
  16. T. Nakai, Y. Ueno, K. Kaneko, S. Tanahashi, and S. Takeda, Opt. Quantum Electron. 33, 1113 (2001).
  17. A. Papra, A. Bernard, D. Juncker, N. B. Larsen, B. Michel, and E. Delamarche, Langmuir 17, 4090 (2001).
  18. M. K. Chaudhury and G. M. Whitesides, Langmuir 7, 1013 (1991).
  19. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 797 (2003).
  20. W. Lu, A. G. Fadeev, B. H. Qi, E. Smela, B. R. Mattes, J. Ding, G. M. Spinks, J. Mazurkiewicz, D. Z. Zhou, G. G. Wallace, D. R. MacFarlane, S. A. Forsyth, and M. Forsyth, Science 297, 983 (2002).
  21. T. Kaino, Appl. Phys. Lett. 48, 757 (1986).
  22. Y. Huang, G. T. Paloczi, J. Scheuer, and A. Yariv, Opt. Express 11, 2452 (2003), http://www.opticsexpress.org.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited