OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 6 — Mar. 15, 2004
  • pp: 542–544

High-efficiency, high-dispersion diffraction gratings based on total internal reflection

John R. Marciante and Daniel H. Raguin  »View Author Affiliations

Optics Letters, Vol. 29, Issue 6, pp. 542-544 (2004)

View Full Text Article

Acrobat PDF (452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a new class of high-dispersion immersed diffraction gratings for which the reflective nature of the diffraction is provided by the phenomenon of total internal reflection (TIR) regardless of grating tooth shape. Thus, the component can be fabricated from a single dielectric material and requires no metallic or dielectric film layers for high reflection diffraction efficiency. With the absence of metallic absorption, diffraction efficiencies of these TIR gratings can reach more than 99% for 15–20-nm spectral bandwidths, making them suitable for many laser-based technologies.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.2770) Diffraction and gratings : Gratings
(230.1950) Optical devices : Diffraction gratings
(260.6970) Physical optics : Total internal reflection

John R. Marciante and Daniel H. Raguin, "High-efficiency, high-dispersion diffraction gratings based on total internal reflection," Opt. Lett. 29, 542-544 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. F. Mollenauer, J. C. White, and C. R. Pollock, eds., Tunable Lasers, 2nd ed. (Springer-Verlag, Berlin, 1992).
  2. W. Rudolph and B. Wilhelmi, Light Pulse Compression (Harwood Academic, Chur, Switzerland, 1989).
  3. S. J. Augst, A. K. Goyal, R. L. Aggarwal, T. Y. Fan, and A. Sanchez, Opt. Lett. 28, 331 (2003).
  4. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).
  5. The complete vector formula can be found in G. H. Spencer and M. V. R. K. Murty, J. Opt. Soc. Am. 52, 672 (1962).
  6. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, and L. Li, J. Opt. Soc. Am. A 14, 1124 (1997).
  7. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Boedefeld, W. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, Appl. Opt. 38, 6257 (1999).
  8. M. S. D. Smith and K. A. McGreer, IEEE Photon. Technol. Lett. 11, 84 (1999).
  9. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1991).
  10. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1285 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited