OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 6 — Mar. 15, 2004
  • pp: 548–550

Fiber dispersion cancellation by all-optical quantum signal processing based on quantum correlations

Takeshi Ozeki  »View Author Affiliations

Optics Letters, Vol. 29, Issue 6, pp. 548-550 (2004)

View Full Text Article

Acrobat PDF (362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A quantum dispersion canceller is proposed that uses all-optical quantum signal processing based on strong quantum correlations in the signal and idler waves amplified by an optical parametric amplifier at the receiver end. It cancels the even-order dispersion and can regenerate an optical data packet without any ambiguity.

© 2004 Optical Society of America

OCIS Codes
(030.5290) Coherence and statistical optics : Photon statistics
(060.4510) Fiber optics and optical communications : Optical communications
(270.0270) Quantum optics : Quantum optics

Takeshi Ozeki, "Fiber dispersion cancellation by all-optical quantum signal processing based on quantum correlations," Opt. Lett. 29, 548-550 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. D. Franson, Phys. Rev. A 45, 3126 (1992).
  2. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett. 68, 2421 (1992).
  3. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. A 45, 6659 (1992).
  4. M. J. Fich and J. D. Franson, Phys. Rev. A 65, 053809 (2002).
  5. V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, Phys. Rev. Lett. 87, 117902 (2001).
  6. T. S. Larchuck, M. C. Teich, and B. E. A. Saleh, Phys. Rev. A 52, 4145 (1995).
  7. G. C. Agarwal and S. D. Gupta, Phys. Rev. A 49, 3954 (1994).
  8. J. Jeffers and S. M. Barnett, Phys. Rev. A 47, 3291 (1993).
  9. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
  10. A. Yariv, D. Fekete, and D. M. Pepper, Opt. Lett. 4, 52 (1979).
  11. M. Tsang and D. Psaltis, Opt. Lett. 28, 1558 (2003).
  12. H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer-Verlag, Berlin, 2000). I use Haus’s Eq. (11.15) and scattering matrix Eq. (11.16) for Eqs. 2 and 3 in this Letter.
  13. In a ternary code, binary 0 suffers no change, whereas binary 1 changes sequentially: +1→0→-1→0→+1. A ternary code has the properties of a narrow band and good dc balance.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited